ABSTRACT Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
more »
« less
A minimal sequence motif drives selective tRNA dihydrouridylation by hDUS2
ABSTRACT The post-transcriptional reduction of uridine to dihydrouridine (D) by dihydrouridine synthase (DUS) enzymes is among the most ubiquitous transformations in RNA biology. D is found at multiple sites in tRNAs and studies in yeast have proposed that each of the four eukaryotic DUS enzymes modifies a different site, however the molecular basis for this exquisite selectivity is unknown and human DUS enzymes have remained largely uncharacterized. Here we investigate the substrate specificity of human dihydrouridine synthase 2 (hDUS2) using mechanism-based crosslinking with 5-bromouridine (5-BrUrd)-modified oligonucleotide probes andin vitrodihydrouridylation assays. We find that hDUS2 modifies U20 in the D loop of diverse tRNA substrates and identify a minimal GU motif within the tRNA tertiary fold required for directing its activity. Further, we use our mechanism-based platform to screen small molecule inhibitors of hDUS2, a potential anti-cancer target. Our work elucidates the principles of substrate modification by a conserved DUS and provides a general platform to studying RNA modifying enzymes with sequence-defined activity-based probes.
more »
« less
- Award ID(s):
- 1942565
- PAR ID:
- 10569362
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Epitranscriptomic RNA modifications can regulate fundamental biological processes, but we lack approaches to map modification sites and probe writer enzymes. Here we present a chemoproteomic strategy to characterize RNA 5-methylcytidine (m5C) dioxygenase enzymes in their native context based upon metabolic labeling and activity-based crosslinking with 5-ethynylcytidine (5-EC). We profile m5C dioxygenases in human cells including ALKBH1 and TET2 and show that ALKBH1 is the major hm5C- and f5C-forming enzyme in RNA. Further, we map ALKBH1 modification sites transcriptome-wide using 5-EC-iCLIP and ARP-based sequencing to identify ALKBH1-dependent m5C oxidation in a variety of tRNAs and mRNAs and analyze ALKBH1 substrate specificity in vitro. We also apply targeted pyridine borane-mediated sequencing to measure f5C sites on select tRNA. Finally, we show that f5C at the wobble position of tRNA-Leu-CAA plays a role in decoding Leu codons under stress. Our work provides powerful chemical approaches for studying RNA m5C dioxygenases and mapping oxidative m5C modifications and reveals the existence of novel epitranscriptomic pathways for regulating RNA function.more » « less
-
SUMMARY The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 3′ CCA tail, introduce post‐transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High‐throughput sequencing techniques have recently been developed to provide a comprehensive view of aminoacylation state in a tRNA‐specific fashion. However, these methods have never been applied to plants. Here, we treatedArabidopsis thalianaRNA samples with periodate and then performed tRNA‐seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA‐like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously published human cell line data showed a similar pattern. Base modifications result in nucleotide misincorporations and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA‐like sequences (t‐elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post‐transcriptionally modified bases and CCA‐tail addition. However, these t‐elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA‐interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.more » « less
-
Abstract RNA turnover pathways ensure appropriate gene expression levels by eliminating unwanted transcripts. Dis3-like 2 (Dis3L2) is a 3′–5′ exoribonuclease that plays a critical role in human development. Dis3L2 independently degrades structured substrates, including coding and noncoding 3′ uridylated RNAs. While the basis for Dis3L2’s substrate recognition has been well characterized, the mechanism of structured RNA degradation by this family of enzymes is unknown. We characterized the discrete steps of the degradation cycle by determining cryogenic electron microscopy structures representing snapshots along the RNA turnover pathway and measuring kinetic parameters for RNA processing. We discovered a dramatic conformational change that is triggered by double-stranded RNA (dsRNA), repositioning two cold shock domains by 70 Å. This movement exposes a trihelix linker region, which acts as a wedge to separate the two RNA strands. Furthermore, we show that the trihelix linker is critical for dsRNA, but not single-stranded RNA, degradation. These findings reveal the conformational plasticity of Dis3L2 and detail a mechanism of structured RNA degradation.more » « less
-
Accurate translation of the genetic code is maintained in part by aminoacyl-tRNA synthetases (aaRS) proofreading mechanisms that ensure correct attachment of a cognate amino acid to a transfer RNA (tRNA). During environmental stress, such as oxidative stress, demands on aaRS proofreading are altered by changes in the availability of cytoplasmic amino acids. For example, oxidative stress increases levels of cytotoxic tyrosine isomers, noncognate amino acids normally excluded from translation by the proofreading activity of phenylalanyl-tRNA synthetase (PheRS). Here we show that oxidation of PheRS induces a conformational change, generating a partially unstructured protein. This conformational change does not affect Phe or Tyr activation or the aminoacylation activity of PheRS. However, in vitro and ex vivo analyses reveal that proofreading activity to hydrolyze Tyr-tRNA Phe is increased during oxidative stress, while the cognate Phe-tRNA Phe aminoacylation activity is unchanged. In HPX − , Escherichia coli that lack reactive oxygen-scavenging enzymes and accumulate intracellular H 2 O 2 , we found that PheRS proofreading is increased by 11%, thereby providing potential protection against hazardous cytoplasmic m -Tyr accumulation. These findings show that in response to oxidative stress, PheRS proofreading is positively regulated without negative effects on the enzyme’s housekeeping activity in translation. Our findings also illustrate that while the loss of quality control and mistranslation may be beneficial under some conditions, increased proofreading provides a mechanism for the cell to appropriately respond to environmental changes during oxidative stress.more » « less
An official website of the United States government

