skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: First demonstration of a TES based cryogenic Li$$_2$$MoO$$_4$$ detector for neutrinoless double beta decay search
Abstract

Cryogenic calorimetric experiments to search for neutrinoless double-beta decay ($$0\nu \beta \beta $$0νββ) are highly competitive, scalable and versatile in isotope. The largest planned detector array, CUPID, is comprised of about 1500 individual Li$$_{2}$$2$$^{100}$$100MoO$$_4$$4detector modules with a further scale up envisioned for a follow up experiment (CUPID-1T). In this article, we present a novel detector concept targeting this second stage with a low impedance TES based readout for the Li$$_2$$2MoO$$_4$$4absorber that is easily mass-produced and lends itself to a multiplexed readout. We present the detector design and results from a first prototype detector operated at the NEXUS shallow underground facility at Fermilab. The detector is a 2-cm-side cube with 21 g mass that is strongly thermally coupled to its readout chip to allow rise-times of$$\sim $$0.5 ms. This design is more than one order of magnitude faster than present NTD based detectors and is hence expected to effectively mitigate backgrounds generated through the pile-up of two independent two neutrino decay events coinciding close in time. Together with a baseline resolution of 1.95 keV (FWHM) these performance parameters extrapolate to a background index from pile-up as low as$$5\cdot 10^{-6}$$5·10-6 counts/keV/kg/yr in CUPID size crystals. The detector was calibrated up to the MeV region showing sufficient dynamic range for$$0\nu \beta \beta $$0νββsearches. In combination with a SuperCDMS HVeV detector this setup also allowed us to perform a precision measurement of the scintillation time constants of Li$$_2$$2MoO$$_4$$4, which showed a primary component with a fast O(20 $$\upmu $$μs) time scale.

 
more » « less
PAR ID:
10569543
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal C
Volume:
85
Issue:
2
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for$$0\nu \beta \beta $$0νββdecay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$${\mathrm{TeO}}_{2}$$TeO2crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$$3{\mathrm{rd}}$$3rdresult of the search for$$0\nu \beta \beta $$0νββ, corresponding to a tonne-year of$$\mathrm{TeO}_{2}$$TeO2exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$0\nu \beta \beta $$0νββdecay in$${}^{130}\mathrm{Te}$$130Teever conducted . We present the current status of CUORE search for$$0\nu \beta \beta $$0νββwith the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$${}^{130}\mathrm{Te}$$130Te$$2\nu \beta \beta $$2νββdecay half-life and decay to excited states of$${}^{130}\mathrm{Xe}$$130Xe, studies performed using an exposure of 300.7 kg yr.

     
    more » « less
  2. Abstract

    The next generation of searches for neutrinoless double beta decay ($$0 \nu \beta \beta $$0νββ) are poised to answer deep questions on the nature of neutrinos and the source of the Universe’s matter–antimatter asymmetry. They will be looking for event rates of less than one event per ton of instrumented isotope per year. To claim discovery, accurate and efficient simulations of detector events that mimic$$0 \nu \beta \beta $$0νββis critical. Traditional Monte Carlo (MC) simulations can be supplemented by machine-learning-based generative models. This work describes the performance of generative models that we designed for monolithic liquid scintillator detectors like KamLAND to produce accurate simulation data without a predefined physics model. We present their current ability to recover low-level features and perform interpolation. In the future, the results of these generative models can be used to improve event classification and background rejection by providing high-quality abundant generated data.

     
    more » « less
  3. Abstract

    Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$gμBB, comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$νfor the$$R_{xx}$$Rxxminimum, e.g., from$$\nu = 11/7$$ν=11/7to$$\nu = 8/5$$ν=8/5, and a corresponding change in the$$R_{xy}$$Rxy, e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$Rxy/RK=(11/7)-1to$$R_{xy}/R_{K} = (8/5)^{-1}$$Rxy/RK=(8/5)-1, with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ν=4/3and$$\nu = 7/5$$ν=7/5resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$Rxyat the$$R_{xx}$$Rxxminima- the latter occurring for$$\nu = 4/3, 7/5$$ν=4/3,7/5and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$νand$$R_{xy}$$Rxy, but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.

     
    more » « less
  4. Abstract

    The$$^{90}$$90Zr(p,$$\gamma $$γ)$$^{91}$$91Nb reaction is one of the important reactions in the$$A\approx 90$$A90mass region and part of the nucleosynthesis path responsible for production of$$^{92}$$92Mo during the$$\gamma $$γ-process. Discrepant data in the literature provide a cross section that varies up to 30% within the Gamow window for the$$^{90}$$90Zr(p,$$\gamma $$γ)$$^{91}$$91Nb reaction. Thus, the cross section measurements of$$^{90}$$90Zr(p,$$\gamma $$γ)$$^{91}$$91Nb reaction were revisited using the$$\gamma $$γ-summing technique. The results are consistent with the lower-value cross sections found in the literature. Based on the new data an updated reaction rate for$$^{90}$$90Zr(p,$$\gamma $$γ)$$^{91}$$91Nb is provided that is up to 20% higher than that obtained from thenon-smokercode.

     
    more » « less
  5. Abstract

    The electricE1 and magneticM1 dipole responses of the$$N=Z$$N=Znucleus$$^{24}$$24Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$24Mg($$\gamma ,\gamma ^{\prime }$$γ,γ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$Jπ=1-, four$$J^{\pi }=1^+$$Jπ=1+, and six$$J^{\pi }=2^+$$Jπ=2+states in$$^{24}$$24Mg. De-excitation$$\gamma $$γrays were detected using the four high-purity germanium detectors of the$$\gamma $$γELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$B(M1)=2.7(3)μN2is observed, but this$$N=Z$$N=Znucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$B(E1)0.61×10-3 e$$^2 \, $$2fm$$^2$$2. The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$B(Π1,1iπ21+)/B(Π1,1iπ0gs+)branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$24Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ρ2(E0,02+0gs+)strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$B(M1,1+02+)/B(M1,1+0gs+)branching ratio of the 10.712 MeV$$1^+$$1+level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$Δβ22between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$02+level.

     
    more » « less