skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 7, 2026

Title: Sublinear-Time Algorithm for MST-Weight Revisited
For graphs of average degree $$d$$, positive integer weights bounded by $$W$$, and accuracy parameter $$\epsilon>0$$, [Chazelle, Rubinfeld, Trevisan; SICOMP'05] have shown that the weight of the minimum spanning tree can be $$(1+\epsilon)$$-approximated in $$\tilde{O}(Wd/\epsilon^2)$$ expected time. This algorithm is frequently taught in courses on sublinear time algorithms. However, the $$\tilde{O}(Wd/\epsilon^2)$$-time variant requires an involved analysis, leading to simpler but much slower variations being taught instead. Here we present an alternative that is not only simpler to analyze, but also improves the number of queries, getting closer to the nearly-matching information theoretic lower bound. In addition to estimating the weight of the MST, our algorithm is also a perfect sampler for sampling uniformly at random an edge of the MST. At the core of our result is the insight that halting Prim's algorithm after an expected $$\tilde{O}(d)$$ number of steps, then returning the highest weighted edge of the tree, results in sampling an edge of the MST uniformly at random. Via repeated trials and averaging the results, this immediately implies an algorithm for estimating the weight of the MST. Since our algorithm is based on Prim's, it naturally works for non-integer weighted graphs as well.  more » « less
Award ID(s):
2338816
PAR ID:
10569582
Author(s) / Creator(s):
;
Publisher / Repository:
SIAM
Date Published:
ISBN:
978-1-61197-831-5
Page Range / eLocation ID:
46-53
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of designing sublinear time algorithms for estimating the cost of minimum] metric traveling salesman (TSP) tour. Specifically, given access to a n × n distance matrix D that specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any epsilon > 0, there exists an O^~(n/epsilon^O(1))-time algorithm that returns a (1+epsilon)-approximate estimate of the MST cost. This result immediately implies an O^~(n/epsilon^O(1)) time algorithm to estimate the TSP cost to within a (2 + epsilon) factor for any epsilon > 0. However, no o(n^2)-time algorithms are known to approximate metric TSP to a factor that is strictly better than 2. On the other hand, there were also no known barriers that rule out existence of (1 + epsilon)-approximate estimation algorithms for metric TSP with O^~ (n) time for any fixed epsilon > 0. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. On the algorithmic side, we first consider the graphic TSP problem where the metric D corresponds to shortest path distances in a connected unweighted undirected graph. We show that there exists an O^~(n) time algorithm that estimates the cost of graphic TSP to within a factor of (2 − epsilon_0) for some epsilon_0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that achieves an approximation factor less than 2. We also consider another well-studied special case of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an O^~(n ^ 1.5) time algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic TSP as well as for (1, 2)-TSP naturally lend themselves to O^~(n) space streaming algorithms that give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results motivate the natural question if analogously to metric MST, for any epsilon > 0, (1 + epsilon)-approximate estimates can be obtained for graphic TSP and (1, 2)-TSP using O^~ (n) queries. We answer this question in the negative – there exists an epsilon_0 > 0, such that any algorithm that estimates the cost of graphic TSP ((1, 2)-TSP) to within a (1 + epsilon_0)-factor, necessarily requires (n^2) queries. This lower bound result highlights a sharp separation between the metric MST and metric TSP problems. Similarly to many classical approximation algorithms for TSP, our sublinear time estimation algorithms utilize subroutines for estimating the size of a maximum matching in the underlying graph. We show that this is not merely an artifact of our approach, and that for any epsilon > 0, any algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + epsilon)-factor, can also be used to estimate the size of a maximum matching in a bipartite graph to within an epsilon n additive error. This connection allows us to translate known lower bounds for matching size estimation in various models to similar lower bounds for metric TSP cost estimation. 
    more » « less
  2. null (Ed.)
    We present an $$\tilde O(m+n^{1.5})$$-time randomized algorithm for maximum cardinality bipartite matching and related problems (e.g. transshipment, negative-weight shortest paths, and optimal transport) on $$m$$-edge, $$n$$-node graphs. For maximum cardinality bipartite matching on moderately dense graphs, i.e. $$m = \Omega(n^{1.5})$$, our algorithm runs in time nearly linear in the input size and constitutes the first improvement over the classic $$O(m\sqrt{n})$$-time [Dinic 1970; Hopcroft-Karp 1971; Karzanov 1973] and $$\tilde O(n^\omega)$$-time algorithms [Ibarra-Moran 1981] (where currently $$\omega\approx 2.373$$). On sparser graphs, i.e. when $$m = n^{9/8 + \delta}$$ for any constant $$\delta>0$$, our result improves upon the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a] which achieve an $$\tilde O(m^{4/3+o(1)})$$ runtime. We obtain these results by combining and advancing recent lines of research in interior point methods (IPMs) and dynamic graph algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-Sidford-Song 2020], providing a general primal-dual IPM framework and new sampling-based techniques for handling infeasibility induced by approximate linear system solvers. Second, we provide a simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates of both [v.d.Brand~et~al.] and our new IPMs. Combining this general machinery yields a simpler $$\tilde O(n \sqrt{m})$$ time algorithm for matching based on the logarithmic barrier function, and our state-of-the-art $$\tilde O(m+n^{1.5})$$ time algorithm for matching based on the [Lee-Sidford 2014] barrier (as regularized in [v.d.Brand~et~al.]). 
    more » « less
  3. Given an undirected, weighted graph, the minimum spanning tree (MST)is a tree that connects all of the vertices of the graph with minimum sum of edge weights. In real world applications, network designers often seek to quickly find a replacement edge for each edge in the MST. For example, when a traffic accident closes a road in a transportation network, or a line goes down in a communication network, the replacement edge may reconnect the MST at lowest cost. In the paper, we consider the case of finding the lowest cost replacement edge for each edge of the MST. A previous algorithm by Tarjan takes O{m lpha(m, n)} time and space, where $lpha(m, n)$ is the inverse Ackermann’s function. Given the MST and sorted non-tree edges, our algorithm is the first practical algorithm that runs in O(m+n) time and O(m+n) space to find all replacement edges. Additionally, since the most vital edge is the tree edge whose removal causes the highest cost, our algorithm finds it in linear time. 
    more » « less
  4. In this paper we provide anO(mloglogO(1)nlog (1/ϵ))-expected time algorithm for solving Laplacian systems onn-nodem-edge graphs, improving upon the previous best expected runtime of\(O(m \sqrt {\log n} \mathrm{log log}^{O(1)} n \log (1/\epsilon)) \)achieved by (Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu 2014). To obtain this result we provide efficient constructions of low spectral stretch graph approximations with improved stretch and sparsity bounds. As motivation for this work, we show that for every set of vectors in\(\mathbb {R}^d \)(not just those induced by graphs) and all integerk> 1 there exist an ultra-sparsifier withd− 1 +O(d/k) re-weighted vectors of relative condition number at mostk2. For smallk, this improves upon the previous best known multiplicative factor of\(k \cdot \tilde{O}(\log d) \), which is only known for the graph case. Additionally, in the graph case we employ our low-stretch subgraph construction to obtainn− 1 +O(n/k)-edge ultrasparsifiers of relative condition numberk1 +o(1)fork=ω(log δn) for anyδ> 0: this improves upon the previous work fork=o(exp (log 1/2 −δn)). 
    more » « less
  5. We present a weighted approach to compute a maximum cardinality matching in an arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph G(A cup B,E) with edge weights of 0 or 1. Let w <= n be an upper bound on the weight of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching in G in O~(m(sqrt{w} + sqrt{r} + wr/n)) time. When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m sqrt{n}) time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n and wr=O(n^{gamma}) for gamma < 3/2, then we can compute maximum cardinality matching in G in o(m sqrt{n}) time. Using our algorithm, we obtain a new O~(n^{4/3}/epsilon^4) time algorithm to compute an epsilon-approximate bottleneck matching of A,B subsetR^2 and an 1/(epsilon^{O(d)}}n^{1+(d-1)/(2d-1)}) poly log n time algorithm for computing epsilon-approximate bottleneck matching in d-dimensions. All previous algorithms take Omega(n^{3/2}) time. Given any graph G(A cup B,E) that has an easily computable balanced vertex separator for every subgraph G'(V',E') of size |V'|^{delta}, for delta in [1/2,1), we can apply our algorithm to compute a maximum matching in O~(mn^{delta/1+delta}) time improving upon the O(m sqrt{n}) time taken by the HK-Algorithm. 
    more » « less