skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blended Integral-Proportional/Proportional-Integral Control for Voltage Source Converter-Based AC Microgrids
Award ID(s):
2402495
PAR ID:
10569631
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Access
Volume:
12
ISSN:
2169-3536
Page Range / eLocation ID:
122828 to 122839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The prediction of microstructure evolution and densification behavior during the spark plasma sintering (SPS) process largely depends on accurate temperature regulation. A loop feedback control algorithm called proportional integral derivative (PID) control is a practical simulation tool, but its coefficients are often determined by an inefficient “trial and error” method. This paper is devoted to proposing a numerical method based on the principles of variable coefficients to construct an optimal linear PID controller in SPS electro-thermal simulations. Different types of temperature profiles were applied to evaluate the feasibility of the proposed method. Simulation results showed that, for temperature profiles conventionally used in SPS cycles, the PID output keeps pace with the desired profile. Characterized by an imperfect time delay and overshoot/undershoot, the constructed PID controller needs further advancement to provide a more satisfactory temperature regulation for non-continuous temperature profiles. The first step towards a numerical rule for the optimal PID controller design was undertaken in this work. It is expected to provide a valuable reference for the advanced electro-thermal modeling of SPS. 
    more » « less
  2. Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)
    Civil infrastructures are susceptible to damage due to external forces such as winds and earthquakes. These external forces cause damage to buildings and different civil structures. To prevent this, active control systems are executed. These systems use sensors to measure the displacement of the infrastructure, then actuators are utilized to provide a force that counteracts that displacement. In this study, a Proportional Integral Derivative (PID) controller was used to minimize the impact of an earthquake disturbance on multi-story structures. The proportional, integral, and derivative gains of the controller were obtained using Particle Swarm Optimization (PSO). This PID controller was validated on a simulated five-story structure based on the Kajima Shizuoka building with five ideal actuators. The effectiveness of the PID controller in reducing the seismic response of the structure with regards to inter-story displacement and acceleration was compared to the uncontrolled response of the structure. It is found that the PID controller with PID parameters obtained from the PSO algorithm offers effective control for the simulated five story structure. 
    more » « less