skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Programming patchy particles for materials assembly design
Direct design of complex functional materials would revolutionize technologies ranging from printable organs to novel clean energy devices. However, even incremental steps toward designing functional materials have proven challenging. If the material is constructed from highly complex components, the design space of materials properties rapidly becomes too computationally expensive to search. On the other hand, very simple components such as uniform spherical particles are not powerful enough to capture rich functional behavior. Here, we introduce a differentiable materials design model with components that are simple enough to design yet powerful enough to capture complex materials properties: rigid bodies composed of spherical particles with directional interactions (patchy particles). We showcase the method with self-assembly designs ranging from open lattices to self-limiting clusters, all of which are notoriously challenging design goals to achieve using purely isotropic particles. By directly optimizing over the location and interaction of the patches on patchy particles using gradient descent, we dramatically reduce the computation time for finding the optimal building blocks.  more » « less
Award ID(s):
1921619
PAR ID:
10569649
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
NAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
27
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polymeric particles with complex shapes are required for biomedical therapies, colloidal self‐assembly, and micro‐robotics. It has been challenging to synthesize particles beyond simple shapes (e.g., spheres, cubes) with high structural accuracy using existing methods. Here, a method for fabricating polymeric microparticles of complex 3D shapes is reported using two‐photon lithography, and dispersing the particles in an aqueous solution on a glass substrate. The fabrication of polyhedrons (e.g., tetrahedron, pyramid), polypods (e.g., tetrapod, hexapod), and other shapes of 5–10 µm in size is demonstrated. Confocal microscopy is used to track the motion of the sphere, tetrahedron, tetrapod, and screw‐shaped particles near the substrate, and determine their translational diffusion coefficients. HYDRO++ is used to simulate the motion of the particles far from the substrate. The influence of particle size and substrate effects on diffusion in the spherical particles is determined and finds that the non‐spherical particles have increased hindrance at the substrate compared to the spherical particles. 
    more » « less
  2. null (Ed.)
    Suprastructures at the colloidal scale must be assembled with precise control over local interactions to accurately mimic biological complexes. The toughest design requirements include breaking the symmetry of assembly in a simple and reversible fashion to unlock functions and properties so far limited to living matter. We demonstrate a simple experimental technique to program magnetic field–induced interactions between metallodielectric patchy particles and isotropic, nonmagnetic “satellite” particles. By controlling the connectivity, composition, and distribution of building blocks, we show the assembly of three-dimensional, multicomponent supraparticles that can dynamically reconfigure in response to change in external field strength. The local arrangement of building blocks and their reconfigurability are governed by a balance of attraction and repulsion between oppositely polarized domains, which we illustrate theoretically and tune experimentally. Tunable, bulk assembly of colloidal matter with predefined symmetry provides a platform to design functional microstructured materials with preprogrammable physical and chemical properties. 
    more » « less
  3. We report simulation studies on the self-assembly behavior of five different types of lobed patchy particles of different shapes (snowman, dumbbell, trigonal planar, square planar, and tetrahedral). Inspired by an experimental method of synthesizing patchy particles (Wang et al., Nature, 2012, 491:51-55), we control the lobe size indirectly by gradually varying the seed diameter and study its effect on self-assembled structures at different temperatures. Snowman shaped particles self-assemble only at a lower temperature and form two-dimensional sheets, elongated micelles, and spherical micelles, depending on the seed diameter. Each of the four other lobed particles self-assemble into four distinct morphologies (random aggregates, spherical aggregates, liquid droplets, and crystalline structures) for a given lobe size and temperature. We observed temperature-dependent transitions between two morphologies depending on the type of the lobed particle. The self-assembled structures formed by these four types of particles are porous. We show that their porosities can be tuned by controlling the lobe size and temperature. 
    more » « less
  4. Abstract Ultrasound‐directed self‐assembly (DSA) utilizes the acoustic radiation force associated with a standing ultrasound wave field to organize particles dispersed in a fluid medium into specific patterns. State‐of‐the‐art ultrasound DSA methods use single‐frequency ultrasound wave fields, which only allow organizing particles into simple, periodic patterns, or require a large number of ultrasound transducers to assemble complex patterns. In contrast, this work introduces multi‐frequency ultrasound wave fields to organize particles into complex patterns. A method is theoretically derived to determine the operating parameters (frequency, amplitude, phase) of any arrangement of ultrasound transducers, required to assemble spherical particles dispersed in a fluid medium into specific patterns, and experimentally validated for a system with two frequencies. The results show that multi‐frequency compared to single‐frequency ultrasound DSA enables the assembly of complex patterns of particles with substantially fewer ultrasound transducers. Additionally, the method does not incur a penalty in terms of accuracy, and it does not require custom hardware for each different pattern, thus offering reconfigurability, which contrasts, e.g., acoustic holography. Multi‐frequency ultrasound DSA can spur progress in a myriad of engineering applications, including the manufacturing of multi‐functional polymer matrix composite materials that derive their structural, electric, acoustic, or thermal properties from the spatial organization of particles in the matrix. 
    more » « less
  5. Just like atoms combine into molecules, colloids can self-organize into predetermined structures according to a set of design principles. Controlling valence—the number of interparticle bonds—is a prerequisite for the assembly of complex architectures. The assembly can be directed via solid “patchy” particles with prescribed geometries to make, for example, a colloidal diamond. We demonstrate here that the nanoscale ordering of individual molecular linkers can combine to program the structure of microscale assemblies. Specifically, we experimentally show that covering initially isotropic microdroplets withNmobile DNA linkers results in spontaneous and reversible self-organization of the DNA intoZ(N) binding patches, selecting a predictable valence. We understand this valence thermodynamically, deriving a free energy functional for droplet–droplet adhesion that accurately predicts the equilibrium size of and molecular organization within patches, as well as the observed valence transitions withN. Thus, microscopic self-organization can be programmed by choosing the molecular properties and concentration of binders. These results are widely applicable to the assembly of any particle with mobile linkers, such as functionalized liposomes or protein interactions in cell–cell adhesion. 
    more » « less