skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 31, 2025

Title: CRONOS: Enhancing Deep Learning with Scalable GPU Accelerated Convex Neural Networks
We introduce the CRONOS algorithm for convex optimization of two-layer neural networks. CRONOS is the first algorithm capable of scaling to high-dimensional datasets such as ImageNet, which are ubiquitous in modern deep learning. This significantly improves upon prior work, which has been restricted to downsampled versions of MNIST and CIFAR-10. Taking CRONOS as a primitive, we then develop a new algorithm called CRONOS-AM, which combines CRONOS with alternating minimization, to obtain an algorithm capable of training multilayer networks with arbitrary architectures. Our theoretical analysis proves that CRONOS converges to the global minimum of the convex reformulation under mild assumptions. In addition, we validate the efficacy of CRONOS and CRONOS-AM through extensive large-scale numerical experiments with GPU acceleration in JAX. Our results show that CRONOS-AM can obtain comparable or better validation accuracy than predominant tuned deep learning optimizers on vision and language tasks with benchmark datasets such as ImageNet and IMDb. To the best of our knowledge, CRONOS is the first algorithm which utilizes the convex reformulation to enhance performance on large-scale learning tasks  more » « less
Award ID(s):
2236829
PAR ID:
10569654
Author(s) / Creator(s):
; ;
Publisher / Repository:
38th Conference on Neural Information Processing Systems (NeurIPS 2024).
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The advent of large pre-trained models has brought about a paradigm shift in both visual representation learning and natural language processing. However, clustering unlabeled images, as a fundamental and classic machine learning problem, still lacks an effective solution, particularly for large-scale datasets. In this paper, we propose a novel image clustering pipeline that leverages the powerful feature representation of large pre-trained models such as CLIP and cluster images effectively and efficiently at scale. We first developed a novel algorithm to estimate the number of clusters in a given dataset. We then show that the pre-trained features are significantly more structured by further optimizing the rate reduction objective. The resulting features may significantly improve the clustering accuracy, e.g., from 57\% to 66\% on ImageNet-1k. Furthermore, by leveraging CLIP's multimodality bridge between image and text, we develop a simple yet effective self-labeling algorithm that produces meaningful captions for the clusters. Through extensive experiments, we show that our pipeline works well on standard datasets such as CIFAR-10, CIFAR-100, and ImageNet-1k. It also extends to datasets that are not curated for clustering, such as LAION-Aesthetics and WikiArts. We released the code in https://github.com/LeslieTrue/CPP 
    more » « less
  2. Modern learning frameworks often train deep neural networks with massive amounts of unlabeled data to learn representations by solving simple pretext tasks, then use the representations as foundations for downstream tasks. These networks are empirically designed; as such, they are usually not interpretable, their representations are not structured, and their designs are potentially redundant. White-box deep networks, in which each layer explicitly identifies and transforms structures in the data, present a promising alternative. However, existing white-box architectures have only been shown to work at scale in supervised settings with labeled data, such as classification. In this work, we provide the first instantiation of the white-box design paradigm that can be applied to large-scale unsupervised representation learning. We do this by exploiting a fundamental connection between diffusion, compression, and (masked) completion, deriving a deep transformer-like masked autoencoder architecture, called CRATE-MAE, in which the role of each layer is mathematically fully interpretable: they transform the data distribution to and from a structured representation. Extensive empirical evaluations confirm our analytical insights. CRATE-MAE demonstrates highly promising performance on large-scale imagery datasets while using only ~30% of the parameters compared to the standard masked autoencoder with the same model configuration. The representations learned by CRATE-MAE have explicit structure and also contain semantic meaning. Code is available at https://github.com/Ma-Lab-Berkeley/CRATE 
    more » « less
  3. Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification. To defend against such attacks, an effective and popular approach, known as adversarial training (AT), has been shown to mitigate the negative impact of adversarial attacks by virtue of a min-max robust training method. While effective, it remains unclear whether it can successfully be adapted to the distributed learning context. The power of distributed optimization over multiple machines enables us to scale up robust training over large models and datasets. Spurred by that, we propose distributed adversarial training (DAT), a large-batch adversarial training framework implemented over multiple machines. We show that DAT is general, which supports training over labeled and unlabeled data, multiple types of attack generation methods, and gradient compression operations favored for distributed optimization. Theoretically, we provide, under standard conditions in the optimization theory, the convergence rate of DAT to the first-order stationary points in general non-convex settings. Empirically, we demonstrate that DAT either matches or outperforms state-of-the-art robust accuracies and achieves a graceful training speedup (e.g., on ResNet–50 under ImageNet). 
    more » « less
  4. null (Ed.)
    Text classification is a fundamental problem, and recently, deep neural networks (DNN) have shown promising results in many natural language tasks. However, their human-level performance relies on high-quality annotations, which are time-consuming and expensive to collect. As we move towards large inexpensive datasets, the inherent label noise degrades the generalization of DNN. While most machine learning literature focuses on building complex networks to handle noise, in this work, we evaluate model-agnostic methods to handle inherent noise in large scale text classification that can be easily incorporated into existing machine learning workflows with minimal interruption. Specifically, we conduct a point-by-point comparative study between several noise-robust methods on three datasets encompassing three popular classification models. To our knowledge, this is the first time such a comprehensive study in text classification encircling popular models and model-agnostic loss methods has been conducted. In this study, we describe our learning and demonstrate the application of our approach, which outperformed baselines by up to 10% in classification accuracy while requiring no network modifications. 
    more » « less
  5. We introduce a technique for tuning the learning rate scale factor of any base optimization algorithm and schedule automatically, which we call Mechanic. Our method provides a practical realization of recent theoretical reductions for accomplishing a similar goal in online convex optimization. We rigorously evaluate Mechanic on a range of large scale deep learning tasks with varying batch sizes, schedules, and base optimization algorithms. These experiments demonstrate that depending on the problem, Mechanic either comes very close to, matches or even improves upon manual tuning of learning rates. 
    more » « less