skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


This content will become publicly available on January 1, 2026

Title: Effect of water treatment on microstructure and magnon thermal transport in spin ladder compound Sr 12 Y 2 Cu 24 O 41
We show that water-induced decomposition reduces magnon thermal conductivity in a spin-ladder polycrystal, while the absence of grain boundaries or a metal coating prevents degradation, ensuring stability for thermal management applications.  more » « less
Award ID(s):
2144328
PAR ID:
10569698
Author(s) / Creator(s):
;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work reports the thermal properties of garnet electrolyte LLZTO. The aged LLZTO exhibits an enhanced thermal conductivity, attributed to the formation of Li2CO3
    more » « less
  2. In this study, we investigate the utility of Ca2FeMnO6-δand Sr2FeMnO6-δas materials with low thermal conductivity, finding potential applications in thermoelectrics, electronics, solar devices, and gas turbines for land and aerospace use. These compounds, characterized as oxygen-deficient perovskites, feature distinct vacancy arrangements. Ca2FeMnO6-δadopts a brownmillerite-type orthorhombic structure with ordered vacancy arrangement, while Sr2FeMnO6-δadopts a perovskite cubic structure with disordered vacancy distribution. Notably, both compounds exhibit remarkably low thermal conductivity, measuring below 0.50 Wm−1K−1. This places them among the materials with the lowest thermal conductivity reported for perovskites. The observed low thermal conductivity is attributed to oxygen vacancies and phonon scattering. Interestingly as SEM images show the smaller grain size, our findings suggest that creating vacancies and lowering the grain size or increasing the grain boundaries play a crucial role in achieving such low thermal conductivity values. This characteristic enhances the potential of these materials for applications where efficient heat dissipation, safety, and equipment longevity are paramount. 
    more » « less
  3. The thermal properties of Ba 3 Cu 2 Sn 3 Se 10 were investigated by measurement of the thermal conductivity and heat capacity. The chemical bonding in this diamagnetic material was investigated using structural data from Rietveld refinement and calculated electron localization. This quaternary chalcogenide is monoclinic ( P 2 1 / c ), has a large unit cell with 72 atoms in the primitive cell, and a high local coordination environment. The Debye temperature (162 K) and average speed of sound (1666 m s −1 ) are relatively low with a very small electronic contribution to the heat capacity. Ultralow thermal conductivity (0.46 W m −1 K −1 at room temperature) is attributed to the relatively weak chemical bonding and intrinsic anharmonicity, in addition to a large unit cell. This work is part of the continuing effort to explore quaternary chalcogenides with intrinsically low thermal conductivity and identify the features that result in a low thermal conductivity. 
    more » « less
  4. Abstract Thermal conductivity plays a pivotal role in understanding the dynamics and evolution of Earth's interior. The Earth's lower mantle is dominated by MgSiO3polymorphs which may incorporate trace amounts of water. However, the thermal conductivity of MgSiO3‐H2O binary system remains poorly understood. Here, we calculate the thermal conductivity of water‐free and water‐bearing bridgmanite, post‐perovskite, and MgSiO3melt, using a combination of Green‐Kubo method with molecular dynamics simulations based on a machine learning potential of ab initio quality. The thermal conductivities of water‐free bridgmanite and post‐perovskite overall agree well with previous theoretical and experimental studies. The presence of water mildly reduces the thermal conductivity of the host minerals, significantly weakens the temperature dependence of the thermal conductivity, and reduces the thermal anisotropy of post‐perovskite. Overall, water reduces the thermal conductivity difference between bridgmanite and post‐perovskite, and thus may attenuate lateral heterogeneities of the core‐mantle boundary heat flux. 
    more » « less
  5. Abstract Framework oxide materials are well-known for exhibiting not only negative thermal expansion (NTE), but also demonstrating thermal expansion that can be controlled using composition as a tuning parameter. In this work, we study the intrinsic thermal expansion properties of Co2V2O7, which has shown bulk linear NTE, and attempt to understand how substituting Ni2+for Co2+will affect the thermal expansion. The isomorphic solid solution is synthesized through solid-state methods and characterized using x-ray diffraction (XRD), diffuse reflectance spectroscopy, and neutron diffraction. The size difference between Ni2+and Co2+as well as the polyhedral volume of each Co2+metal coordination environment in the crystal structure allows Ni2+to partially be directed toward one crystallographic site over the other. Variable temperature synchrotron XRD data are employed to understand intrinsic thermal expansion. Across the solid solution, no intrinsic NTE is observed at the microscopic level, yet a degree of tunability in the thermal expansion coefficient with Ni substitution is demonstrated. The disparities between the intrinsic and bulk thermal expansion properties suggest that a morphological mechanism may have resulted in NTE in the bulk. 
    more » « less