skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Excitons in Hematite Fe 2 O 3 : Short-Time Dynamics from TD-DFT and Non-Adiabatic Dynamics Theories
Award ID(s):
1931366
PAR ID:
10569764
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
128
Issue:
33
ISSN:
1932-7447
Page Range / eLocation ID:
13681 to 13693
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS 2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS 2 -multilayer graphite and bulk MoS 2 -multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron–hole pairs into monolayer or bulk MoS 2 . The transfer of these photocarriers to the adjacent multilayer graphite was time resolved by measuring the differential reflection of a probe pulse. We found that photocarriers injected into monolayer MoS 2 transfer to graphite on an ultrafast time scale shorter than 400 fs. Such an efficient charge transfer is key to the development of high performance optoelectronic devices with MoS 2 as the light absorbing layer and graphite as electrodes. The absorption coefficient of monolayer MoS 2 can be controlled by the carriers in graphite. This process can be used for interlayer coupling and control. In a bulk MoS 2 -graphite heterostructure, the photocarrier transfer time is about 220 ps, due to the inefficient interlayer charge transport in bulk MoS 2 . These results provide useful information for developing optoelectronic devices based on MoS 2 -graphite heterostructures. 
    more » « less
  3. Exciton dynamics o perovskite nanoclusters has been investigated or the rst time using emtosecond transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopy. The TA results show two photoinduced absorption signals at 420 and 461 nm and a photoinduced bleach (PB) signal at 448 nm. The analysis o the PB recovery kinetic decay and kinetic model uncovered multiple processes contributing to electron−hole recombination. The ast component (∼8 ps) is attributed to vibrational relaxation within the initial excited state, and the medium component (∼60 ps) is attributed to shallow carrier trapping. The slow component is attributed to deep carrier trapping rom the initial conduction band edge (∼666 ps) and the shallow trap state (∼40 ps). The TRPL reveals longer time dynamics, with modeled lietimes o 6.6 and 93 ns attributed to recombination through the deep trap state and direct band edge recombination, respectively. The signicant role o exciton trapping processes in the dynamics indicates that these highly conned nanoclusters have deect-rich suraces. 
    more » « less