Abstract Catechol is an oft‐used crosslinking precursor and adhesive molecule for designing in situ curable biomaterials and adhesives and the addition of chemical or enzymatic oxidants is required to initiate fast curing. Here, the feasibility for 6‐hydroxydopamine (6‐OHDA)‐modified 8‐armed polyethylene glycol (PEG) (8‐arm PEG‐DA‐OH) to cure through autoxidation is evaluated. The modification of catechol side chain with an electron‐donating hydroxyl group at the six‐position drastically increased the rate of oxidation and the adhesive cured in just over 1 min through autoxidation. The cure time is decreased to under 40 s with the addition of branched polyethyleneimine (PEI). UV–vis spectra revealed that the deprotonated quinone of 6‐OHDA is a key oxidation intermediate for chemical crosslinking between 6‐OHDA and with primary amine. PEG functionalized with unmodified catechol do not solidify through autoxidation, which highlights the contribution of the electron‐donating hydroxyl group in promoting fast oxidation and crosslinking. Eight‐arm PEG‐DA‐OH and PEI mixture also demonstrated significantly higher adhesion strength to pericardium tissues when compared to a commercial PEG‐based adhesive, DuraSeal. This report highlights 6‐OHDA as an effective crosslinking precursor and adhesive molecule for designing injectable adhesives that do not require externally added oxidants and the adhesive is activated by simple dissolution in an aqueous solution.
more »
« less
This content will become publicly available on December 12, 2025
Modular synthesis and facile network formation of catechol functionalized triblock copolymers
We report the synthesis of catechol-functionalized symmetric triblock polymers comprising densely functionalized catechol endblocks using anionic ring-opening polymerization (AROP) and thiol–ene click chemistry.
more »
« less
- Award ID(s):
- 2048285
- PAR ID:
- 10569811
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 60
- Issue:
- 100
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 14952 to 14955
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Physically crosslinked gelatin microgels were functionalized with a bioadhesive molecule, catechol, to study the effect of in situ generated H2O2 on full-thickness wound repair in diabetic mice. Due to the physically crosslinked nature of the microgels, they transition into a hydrogel film upon hydration. The formation of a hydrogel film was confirmed by the changes in their morphology and viscoelastic properties. Additionally, these microgels released up to 86 μM of H2O2 as a result of catechol autoxidation. The generated H2O2 completely eradicated Staphylococcus epidermidis with an initial concentration of 103 CFU mL−1. These microgels were not cytotoxic and promoted VEGF upregulation in immortalized human keratinocytes (HaCaT) in vitro. When the microgels were applied to a full-thickness dermal wound in diabetic mice, dermal wound closure was accelerated over 14 days, achieving a wound closure of 90% based on the wound area. Microgel-treated wounds also resulted in complete re-epithelialization and regeneration of new dermal tissues with morphology and structure resembling those of native tissues. These results indicate that the release of micromolar concentrations of H2O2 can accelerate wound healing in a healing-impaired animal.more » « less
-
Hemorrhage is one of the leading preventable causes of death associated with trauma, which is often complicated by wound infection. Current hemostatic materials are not ideal and lack antimicrobial properties needed for infection prevention. Here, we tested the feasibility for 6-chlorodopamine-functionalized gelatin (GDC) nanoparticles to function as a hemostatic powder with strong tissue adhesion and antibacterial properties. 6-Chlorodopamine contains a catechol sidechain that is further modified with an electron withdrawing chlorine atom, and provides strong tissue adhesion and antimicrobial property. These gelatin nanoparticles are not covalently crosslinked, which enablde them to rapidly transition into an adhesive film when hydrated with an aqueous solution or blood. The chlorination of catechol significantly increased structural integrity, interfacial bonding to tissue surface, and the rate of film formation. Additionally, GDC nanoparticles are noncytotoxic and nonhemolytic, and effectively killed Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Finally, GDC nanoparticles achieved significantly faster hemostasis and reduced blood loss when compared to a commercial fibrin glue, Tisseel, in tail transection and liver hemorrhage models performed in mice. These findings highlight the potential of GDC nanoparticle as a versatile, multifunctional hemostatic agent capable of both rapid hemorrhage control and infection prevention.more » « less
-
Catechol-based materials possess diverse properties that are especially well-suitable for redox-based bioelectronics. Previous top-down, systems-level property measurements have shown that catechol-polysaccharide films ( e.g. , catechol-chitosan films) are redox-active and allow electrons to flow through the catechol/quinone moieties via thermodynamically-constrained redox reactions. Here, we report that catechol-chitosan films are also photothermally responsive and enable near infrared (NIR) radiation to be transduced into heat. When we simultaneously stimulated catechol-chitosan films with NIR and redox inputs, times-series measurements showed that the responses were reversible and largely independent. Fundamentally, these top-down measurements suggest that the flow of energy through catechol-based materials via the redox-based molecular modality and the electromagnetic-based optical modality can be independent. Practically, this work further illustrates the potential of catecholic materials for bridging bio-device communication because it enables communication through both short-range redox modalities and long-range electromagnetic modalities.more » « less
-
Polymeric nanoparticles with reactive functional groups are an attractive platform for drug carriers that can be conjugated with drugs through a cleavable covalent linkage. Since the required functional groups vary depending on the drug molecule, there is a need for development of a novel post-modification method to introduce different functional groups to polymeric nanoparticles. We recently reported phenylboronic acid (PBA)-containing nanoparticles (BNP) with a unique framboidal morphology created via one-step aqueous dispersion polymerization. Since BNPs have high surface area due to their framboidal morphology and contain a high density of PBA groups, these particles can be used as nanocarriers for drugs that can bind to PBA groups such as curcumin and a catechol-bearing carbon monoxide donor. To further explore the potential of BNPs, in this article we report a novel strategy to introduce different functional groups to BNPs via the palladium-catalyzed Suzuki–Miyaura cross-coupling reaction between the PBA groups and iodo- and bromo-coupling partners. We developed a new catalytic system that efficiently catalyzes Suzuki–Miyaura reactions in water without the need for an organic solvent, as confirmed by NMR. Using this catalyst system, we show that BNPs can be functionalized with carboxylic acids, aldehyde, and hydrazide groups while keeping their original framboidal morphology as confirmed via IR, alizarin red assay, and TEM. Furthermore, the potential of the functionalized BNP in drug delivery applications was demonstrated by conjugating the hydrogen sulfide (H2S)-releasing compound anethole dithiolone to carboxylic acid-functionalized BNPs and show their H2S-releasing capability in cell lysate.more » « less
An official website of the United States government
