skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Susy at the FPF
Abstract Experimental searches for supersymmetry (SUSY) are entering a new era. The failure to observe signals of sparticle production at the large hadron collider (LHC) has eroded the central motivation for SUSY breaking at the weak scale. However, String Theory requires SUSY at the fundamental scale$$M_s$$ M s and hence SUSY could be broken at some high scale below$$M_s$$ M s . Actually, if this were the case, the lack of experimental evidence for low-energy SUSY could have been anticipated, because most stringy models with high-scale SUSY breaking predict that sparticles would start popping up above about 10 TeV, well beyond the reach of current LHC experiments. We show that using next generation LHC experiments currently envisioned for the Forward Physics Facility (FPF) we could search for signals of neutrino-modulino oscillations to probe models with string scale in the grand unification region and SUSY breaking driven by sequestered gravity in gauge mediation. This is possible because of the unprecedented flux of neutrinos to be produced as secondary products in LHC collisions during the high-luminosity era and the capability of FPF experiments to detect and identify their flavors.  more » « less
Award ID(s):
2412679
PAR ID:
10570037
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal C
Volume:
85
Issue:
2
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider$$Z'$$ Z s in heterotic string derived models and study$$Z'$$ Z resonant production at the TeV scale at the Large Hadron Collider (LHC). We use various kinematic differential distributions for the Drell–Yan process at NNLO in QCD to explore the parameter space of such models and investigate$$Z'$$ Z couplings. In particular, we study the impact ofZ-$$Z'$$ Z kinetic-mixing interactions on forward-backward asymmetry ($$A_{FB}$$ A FB ) and other distributions at the LHC. 
    more » « less
  2. Abstract A measurement of the dijet production cross section is reported based on proton–proton collision data collected in 2016 at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3$$\,\text {fb}^{-1}$$ fb - 1 . Jets are reconstructed with the anti-$$k_{\textrm{T}} $$ k T algorithm for distance parameters of$$R=0.4$$ R = 0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity$$|y |_{\text {max}} $$ | y | max of the two jets with the highest transverse momenta$$p_{\textrm{T}}$$ p T and their invariant mass$$m_{1,2} $$ m 1 , 2 , and triple-differentially (3D) as a function of the rapidity separation$$y^{*} $$ y , the total boost$$y_{\text {b}} $$ y b , and either$$m_{1,2} $$ m 1 , 2 or the average$$p_{\textrm{T}}$$ p T of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the$${\text {Z}} $$ Z boson is investigated, yielding a value of$$\alpha _\textrm{S} (m_{{\text {Z}}}) =0.1179\pm 0.0019$$ α S ( m Z ) = 0.1179 ± 0.0019
    more » « less
  3. Abstract The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose–Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at$$\sqrt{s}~=~13$$ s = 13  TeV from charged$$\uppi $$ π –$$\uppi $$ π correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of$$\textrm{K}$$ K –$$\textrm{p}$$ p  pairs. The size of the primordial source is evaluated as a function of the transverse mass ($$m_{\textrm{T}}$$ m T ) of the pairs, leading to the observation of a common scaling for both$$\uppi $$ π –$$\uppi $$ π and$$\textrm{K}$$ K –$$\textrm{p}$$ p  , suggesting a collective effect. Further, the present results are compatible with the$$m_{\textrm{T}}$$ m T scaling of the$$\textrm{p}$$ p –$$\textrm{p}$$ p  and p$$-\Lambda $$ - Λ primordial source measured by ALICE in high multiplicity pp collisions, providing additional evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron–hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles. 
    more » « less
  4. Abstract Leptoquarks ($$\textrm{LQ}$$ LQ s) are hypothetical particles that appear in various extensions of the Standard Model (SM), that can explain observed differences between SM theory predictions and experimental results. The production of these particles has been widely studied at various experiments, most recently at the Large Hadron Collider (LHC), and stringent bounds have been placed on their masses and couplings, assuming the simplest beyond-SM (BSM) hypotheses. However, the limits are significantly weaker for$$\textrm{LQ}$$ LQ models with family non-universal couplings containing enhanced couplings to third-generation fermions. We present a new study on the production of a$$\textrm{LQ}$$ LQ at the LHC, with preferential couplings to third-generation fermions, considering proton-proton collisions at$$\sqrt{s} = 13 \, \textrm{TeV}$$ s = 13 TeV and$$\sqrt{s} = 13.6 \, \textrm{TeV}$$ s = 13.6 TeV . Such a hypothesis is well motivated theoretically and it can explain the recent anomalies in the precision measurements of$$\textrm{B}$$ B -meson decay rates, specifically the$$R_{D^{(*)}}$$ R D ( ) ratios. Under a simplified model where the$$\textrm{LQ}$$ LQ masses and couplings are free parameters, we focus on cases where the$$\textrm{LQ}$$ LQ decays to a$$\tau $$ τ lepton and a$$\textrm{b}$$ b quark, and study how the results are affected by different assumptions about chiral currents and interference effects with other BSM processes with the same final states, such as diagrams with a heavy vector boson,$$\textrm{Z}^{\prime }$$ Z . The analysis is performed using machine learning techniques, resulting in an increased discovery reach at the LHC, allowing us to probe new physics phase space which addresses the$$\textrm{B}$$ B -meson anomalies, for$$\textrm{LQ}$$ LQ masses up to$$5.00\, \textrm{TeV}$$ 5.00 TeV , for the high luminosity LHC scenario. 
    more » « less
  5. Abstract A model based on a$$U(1)_{T^3_R}$$ U ( 1 ) T R 3 extension of the Standard Model can address the mass hierarchy between generations of fermions, explain thermal dark matter abundance, and the muon$$g - 2$$ g - 2 ,$$R_{(D)}$$ R ( D ) , and$$R_{(D^*)}$$ R ( D ) anomalies. The model contains a light scalar boson$$\phi '$$ ϕ and a heavy vector-like quark$$\chi _\textrm{u}$$ χ u that can be probed at CERN’s large hadron collider (LHC). We perform a phenomenology study on the production of$$\phi '$$ ϕ and$${\chi }_u$$ χ u particles from proton–proton$$(\textrm{pp})$$ ( pp ) collisions at the LHC at$$\sqrt{s}=13.6$$ s = 13.6 TeV, primarily through$$g{-g}$$ g - g and$$t{-\chi _\textrm{u}}$$ t - χ u fusion. We work under a simplified model approach and directly take the$$\chi _\textrm{u}$$ χ u and$$\phi '$$ ϕ masses as free parameters. We perform a phenomenological analysis considering$$\chi _\textrm{u}$$ χ u final states to b-quarks, muons, and neutrinos, and$$\phi '$$ ϕ decays to$$\mu ^+\mu ^-$$ μ + μ - . A machine learning algorithm is used to maximize the signal sensitivity, considering an integrated luminosity of 3000$$\text {fb}^{-1}$$ fb - 1 . The proposed methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constraints. 
    more » « less