In modeling battery energy storage systems (BESS) in power systems, binary variables are used to represent the complementary nature of charging and discharging. A conventional approach for these BESS optimization problems is to relax binary variables and convert the problem into a linear program. However, such linear programming relaxation models can yield unrealistic fractional solutions, such as simultaneous charging and discharging. In this paper, we develop a regularized mixed-integer programming (MIP) model for the optimal power flow (OPF) problem with BESS. We prove that, under mild conditions, the proposed regularized model admits a zero integrality gap with its linear programming relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP model, we show that its optimal solution is also near optimal to the original OPF problem with BESS, thereby providing a valid and tight upper bound for the OPF problem with BESS. The use of the regularized MIP model allows us to solve a trilevel [Formula: see text]-[Formula: see text]-[Formula: see text] network contingency problem, which is otherwise intractable to solve. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: N. Jiang (as a graduate student at the Georgia Institute of Technology) and W. Xie were supported in part by the National Science Foundation [Grant 2246414] and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0771 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0771 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
more »
« less
This content will become publicly available on November 28, 2025
An Agile Mobilizing Framework for V2G-Enabled Electric Vehicles under Wildfire Risk
Public safety power shut-offs (PSPSs), implemented by California utilities during high wildfire risk periods, lead to the de-energization of grid sections and leave certain customers out of power for several hours and even days. We propose an agile decision support system (DSS) to mitigate these impacts by harnessing electric vehicles (EVs) as mobile energy sources serving the multiple microgrids (μGs) formed within affected communities. Given that not all μGs possess adequate energy storage and distributed energy resources (DERs), we advocate for the mobilization of vehicle-to-grid (V2G)-enabled EVs for equitable and resilient energy access. Our emergency service relocation (ESR) model incentivizes EV owners to transport stored energy between μGs. However, traditional DSS cannot promptly solve the associated mixed-integer programming (MIP) problem, necessitating a faster solution algorithm for rapid EV deployment under emergency conditions. We introduce a learning framework employing graph convolutional networks (GCNs) that significantly expedites the MIP problem's solution by predicting binary values. Our results demonstrate the effectiveness of the proposed framework in promoting grid resilience and considerably reducing solve time when the problem has 69k binary decision variables.
more »
« less
- Award ID(s):
- 2302015
- PAR ID:
- 10570087
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Vehicular Technology
- ISSN:
- 0018-9545
- Page Range / eLocation ID:
- 1 to 12
- Subject(s) / Keyword(s):
- Electric Vehicle Resilience Microgrid Mixed-Integer Programming Graph Convolutional Networks
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Residential consumers have become active participants in the power distribution network after being equipped with residential EV charging provisions. This creates a challenge for the network operator tasked with dispatching electric power to the residential consumers through the existing distribution network infrastructure in a reliable manner. In this paper, we address the problem of scheduling residential EV charging for multiple consumers while maintaining network reliability. An additional challenge is the restricted exchange of information: where the consumers do not have access to network information and the network operator does not have access to consumer load parameters. We propose a distributed framework which generates an optimal EV charging schedule for individual residential consumers based on their preferences and iteratively updates it until the network reliability constraints set by the operator are satisfied. We validate the proposed approach for different EV adoption levels in a synthetically created digital twin of an actual power distribution network. The results demonstrate that the new approach can achieve a higher level of network reliability compared to the case where residential consumers charge EVs based solely on their individual preferences, thus providing a solution for the existing grid to keep up with increased adoption rates without significant investments in increasing grid capacity.more » « less
-
Electric vehicles (EVs) play a crucial role in achieving sustainability goals, mitigating energy crises, and reducing air pollution. However, their rapid adoption poses significant challenges to the power grid, particularly during peak charging periods, necessitating advanced load management strategies. This study introduces an artificial intelligence (AI)-integrated optimal charging framework designed to facilitate fast charging and mitigate grid stress by smoothing the “duck curve”. Data from Caltech’s Adaptive Charging Network (ACN) at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) site was collected and categorized into day and night patterns to predict charging duration based on key features, including start charging time and energy requested. The AI-driven charging strategy developed optimizes energy management, reduces peak loads, and alleviates grid strain. Additionally, the study evaluates the impact of integrating 1.5 million, 3 million, and 5 million EVs under various AI-based charging strategies, demonstrating the framework’s effectiveness in managing large-scale EV adoption. The peak power consumption reaches around 22,000 MW without EVs, 25,000 MW for 1.5 million EVs, 28,000 MW for 3 million EVs, and 35,000 MW for 5 million EVs without any charging strategy. By implementing an AI-driven optimal charging optimization strategy that considers both early charging and duck curve smoothing, the peak demand is reduced by approximately 16% for 1.5 million EVs, 21.43% for 3 million EVs, and 34.29% for 5 million EVs.more » « less
-
We develop hierarchical coordination frameworks to optimally manage active and reactive power dispatch of number of spatially distributed electric vehicles (EVs) incorporating distribution grid level constraints. The frameworks consist of detailed mathematical models, which can benefit the operation of both entities involved, i.e., the grid operations and EV charging. The first model comprises of a comprehensive optimal power flow model at the distribution grid level, while the second model represents detailed optimal EV charging with reactive power support to the grid. We demonstrate benefits of coordinated dispatch of active and reactive power from EVs using a 33-node distribution feeder with large number of EVs (more than 5,000). Case studies demonstrate that, in constrained distribution grids, coordinated charging reduces the average cost of EV charging if the charging takes place at non-unity power factor mode compared to unity power factor. Similarly, the results also demonstrate that distribution grids can accommodate charging of increased number of EVs if EV charging takes place at non-unity power factor mode compared to unity power factor.more » « less
-
null (Ed.)In the last several decades, public interest for electric vehicles (EVs) and research initiatives for smart AC and DC microgrids have increased substantially. Although EVs can yield benefits to their use, they also present new demand and new business models for a changing power grid. Some of the challenges include stochastic demand profiles from EVs, unplanned load growth by rapid EV adoption, and potential frequency (harmonics) and voltage disturbances due to uncoordinated charging. In order to properly account for any of these problems, an accurate and validated model for EV distributions in a power grid must be established. This model (or several models) may then be used for economic and technical analyses. This paper supplies insight into the impact that EVs play in effecting critical loads in a system, and develops a theoretical model to further support a hardware in-the-loop (HIL) real time simulation of modelling and analysis of a distribution feeder with distributed energy resources (DERs) and EVs based on existing data compiled.more » « less
An official website of the United States government
