skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 30, 2025

Title: Pre‐Marine Isotope Stage 2 glacial activity around the Nevado de Chañi massif in the Central Andes of Argentina and paleoclimate implications
ABSTRACT We describe and analyze the glacial geomorphology and new10Be cosmogenic surface exposure ages from moraines deposited before Marine Isotope Stage (MIS) 2 around Nevado de Chañi (24°4′ S, 65°45′ W), a north–south‐trending massif located in the arid subtropical mountains of northwestern Argentina. We combine these data with previously published ages in order to establish a glacier chronology around the massif and the central Andes. The results show at least three phases of glacier expansions occurred before the global Last Glacial Maximum, (i) during MIS 6, (ii) close to the transition from MIS 4 to MIS 3, and (iii) during mid‐late MIS 3. Based on a comparison of the timing of glacier advances with other glacial and paleoclimatic proxies elsewhere, we infer that glaciers grew in this arid region of the subtropical Andes during periods of reduced temperatures and wetter conditions, ultimately due to intensification of the South American Summer Monsoon. In contrast, during MIS 5 no glacial activity was recorded around the massif, and we infer that even if wetter conditions prevailed in the region the temperature was not sufficiently low to support glaciations.  more » « less
Award ID(s):
2035479
PAR ID:
10570282
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
John Wiley & Sons, Ltd
Date Published:
Journal Name:
Journal of Quaternary Science
ISSN:
0267-8179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Common Era history of effective moisture in the Central Andes is poorly understood, as most Andean proxy records reflect large-scale atmospheric circulation over the South American lowlands rather than localized precipitation vs. evaporation. Here we present 1800-year leaf wax hydrogen and carbon isotope sedimentary records from Lake Chacacocha (13.96°S, 71.08°W, 4,860 m asl.) in the Central Andes. Leaf wax δ2H from different chain lengths offers information about large-scale atmospheric conditions and local-scale effective moisture. Our leaf wax δ2H data record a gradual intensification of the South American summer monsoon (SASM) beginning around ~1250 CE, prior to the external forcings of the Little Ice Age (LIA). Despite peak SASM intensification, our leaf wax δ13C data reveal a locally arid interval between ca. 1600 and 1800 CE. The arid interval was most likely driven by enhanced evaporation and reduced local precipitation, as indicated by the hydrogen isotope fractionation between mid- and long-chain n-alkanes as well as by climate model simulations. Our results help to reconcile conflicting interpretations of the SASM, glacial, and lake-level histories in the Central Andes during the Common Era. 
    more » « less
  2. ABSTRACT Raised shorelines provide important constraints on past sea levels, glacial isostatic adjustment (GIA), and rates and directions of vertical crustal motion. Although most raised shorelines across NW Scotland relate to post‐Last Glacial Maximum (LGM) glacial‐isostatic rebound, many undated shorelines lie above the marine limit established from isolation basins. Here, we present new optically stimulated luminescence (OSL) ages for a raised marine terrace at an elevation of 28 m in Slaggan Bay of NW Scotland. Four OSL ages suggest the feature is pre‐LGM, likely Marine Isotope Stage (MIS) 3. Global mean sea levels (GMSL) during MIS 3 are thought to have been ~40–60 m below present across most of the globe. We use a pair of GIA models to determine what ice sheet and sea‐level scenarios might provide an explanation for these anomalously high sea levels during MIS 3. Our results suggest that in the absence of tectonic activity, such high MIS 3 shorelines across NW Scotland require a MIS 4 ice sheet in Scotland, with postglacial rebound of the crustal depression following its demise during MIS 3 responsible for the elevated shoreline features at that time. 
    more » « less
  3. Roughly 85% of mammalian herbivore species in southern Kenya were replaced by smaller, more adaptable species at some time between 400,000 years ago (400ka) and 500 ka. While this major taxonomic turnover has been attributed to a shift to more a more arid and variable climate and tectonic activity, we wondered if a particularly abrupt shift, a “tipping point,” in climate at some time between 400 and 500 ka was the cause. We analyzed the highest resolution paleoclimate record available in East Africa, Lake Malawi drill core MAL05-1B, for organic geochemical proxies, including branched glycerol dialkyl glycerol tetraethers (GDGTs) and leaf wax deuterium isotopic records to develop the temperature and precipitation history, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~6°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~430 ka. Surprisingly, even more intense warming occurred during Glacial Termination VI around 510 ka. Notably, these deglacial warmings coincide with enriched leaf wax deuterium isotopic values suggesting a shift to more arid conditions in interglacials MIS 13 and 11 than in glacials MIS 14 and 12, respectively. These changes from cold/wet glacials to warm/dry interglacials contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa that transitioned to a warm/wet Holocene. We propose that the major warming and drying during Termination V in the Malawi basin represents a significant abrupt change that impacted much of eastern Africa around 430 ka and was a likely driver of the major faunal turnover noted in the region. 
    more » « less
  4. Abstract High‐relief glacial valleys shape the modern topography of the Southern Patagonian Andes, but their formation remains poorly understood. Two Miocene plutonic complexes in the Andean retroarc, the Fitz Roy (49°S) and Torres del Paine (51°S) massifs, were emplaced between 16.9–16.4 Ma and 12.6–12.4 Ma, respectively. Subduction of oceanic ridge segments initiated ca. 16 Ma at 54°S, leading to northward opening of a slab window with associated mantle upwelling. The onset of major glaciations caused drastic topographic changes since ca. 7 Ma. To constrain the respective contributions of tectonic‐mantle dynamics and fluvio‐glacial erosion to rock exhumation and landscape evolution, we perform inverse thermal modeling of a new data set of zircon and apatite (U‐Th)/He from the two massifs, complemented by apatite4He/3He data for Torres del Paine. Our results show rapid rock exhumation recorded only in the Fitz Roy massif between 10 and 8 Ma, which we ascribe to local mantle upwelling forcing surface uplift and intensified erosion around 49°S. Both massifs record a pulse of rock exhumation between 7 and 4 Ma, which we interpret as enhanced erosion during the beginning of Patagonian glaciations. After a period of erosional and tectonic quiescence in the Pliocene, increased rock exhumation since 3–2 Ma is interpreted as the result of alpine glacial valley carving promoted by reinforced glacial‐interglacial cycles. This study highlights that glacial erosion was the main driver to rock exhumation in the Patagonian retroarc since 7 Ma, but that mantle upwelling might be a driving force to rock exhumation as well. 
    more » « less
  5. Abstract. Determining the timing and extent of Quaternary glaciations around the globe is critical to understanding the drivers behind climate change and glacier fluctuations. Evidence from the southern mid-latitudes indicates that local glacial maxima preceded the global Last Glacial Maximum (LGM), implying that feedbacks in the climate system or ice dynamics played a role beyond the underlying orbital forcings. To shed light on these processes, we investigated the glacial landforms shaped and deposited by the Lago Argentino glacier (50° S), an outlet lobe of the former Patagonian Ice Sheet, in southern Argentina. We mapped geomorphological features on the landscape and dated moraine boulders and outwash sediments using 10Be cosmogenic nuclides and feldspar infrared stimulated luminescence (IRSL) to constrain the chronology of glacial advance and retreat. We report that the Lago Argentino glacier lobe reached more extensive limits prior to the global LGM, advancing during the middle to late Pleistocene between 243–132 ka and during Marine Isotope Stage 3 (MIS 3), culminating at 44.5 ± 8.0 and at 36.6 ± 1.0 ka. Our results indicate that the most extensive advance of the last glacial cycle occurred during MIS 3, and we hypothesize that this was a result of longer and colder winters, as well as increased precipitation delivered by a latitudinal migration of the Southern Westerly Winds belt, highlighting the role of local and regional climate feedbacks in modulating ice mass changes in the southern mid-latitudes. 
    more » « less