skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human-centered GeoAI foundation models: where GeoAI meets human dynamics
Abstract This study examines the role of human dynamics within Geospatial Artificial Intelligence (GeoAI), highlighting its potential to reshape the geospatial research field. GeoAI, emerging from the confluence of geospatial technologies and artificial intelligence, is revolutionizing our comprehension of human-environmental interactions. This revolution is powered by large-scale models trained on extensive geospatial datasets, employing deep learning to analyze complex geospatial phenomena. Our findings highlight the synergy between human intelligence and AI. Particularly, the humans-as-sensors approach enhances the accuracy of geospatial data analysis by leveraging human-centric AI, while the evolving GeoAI landscape underscores the significance of human–robot interaction and the customization of GeoAI services to meet individual needs. The concept of mixed-experts GeoAI, integrating human expertise with AI, plays a crucial role in conducting sophisticated data analyses, ensuring that human insights remain at the forefront of this field. This paper also tackles ethical issues such as privacy and bias, which are pivotal for the ethical application of GeoAI. By exploring these human-centric considerations, we discuss how the collaborations between humans and AI transform the future of work at the human-technology frontier and redefine the role of AI in geospatial contexts.  more » « less
Award ID(s):
2401860
PAR ID:
10570379
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Urban Informatics
Volume:
4
Issue:
1
ISSN:
2731-6963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. GeoAI, or geospatial artificial intelligence, has become a trending topic and the frontier for spatial analytics in Geography. Although much progress has been made in exploring the integration of AI and Geography, there is yet no clear definition of GeoAI, its scope of research, or a broad discussion of how it enables new ways of problem solving across social and environmental sciences. This paper provides a comprehensive overview of GeoAI research used in large-scale image analysis, and its methodological foundation, most recent progress in geospatial applications, and comparative advantages over traditional methods. We organize this review of GeoAI research according to different kinds of image or structured data, including satellite and drone images, street views, and geo-scientific data, as well as their applications in a variety of image analysis and machine vision tasks. While different applications tend to use diverse types of data and models, we summarized six major strengths of GeoAI research, including (1) enablement of large-scale analytics; (2) automation; (3) high accuracy; (4) sensitivity in detecting subtle changes; (5) tolerance of noise in data; and (6) rapid technological advancement. As GeoAI remains a rapidly evolving field, we also describe current knowledge gaps and discuss future research directions. 
    more » « less
  2. Abstract Ethical considerations are the fabric of society, and they foster cooperation, help, and sacrifice for the greater good. Advances in AI create a greater need to examine ethical considerations involving the development and implementation of such systems. Integrating ethics into artificial intelligence-based programs is crucial for preventing negative outcomes, such as privacy breaches and biased decision making. Human–AI teaming (HAIT) presents additional challenges, as the ethical principles and moral theories that provide justification for them are not yet computable by machines. To that effect, models of human judgments and decision making, such as the agent-deed-consequence (ADC) model, will be crucial to inform the ethical guidance functions in AI team mates and to clarify how and why humans (dis)trust machines. The current paper will examine the ADC model as it is applied to the context of HAIT, and the challenges associated with the use of human-centric ethical considerations when applied to an AI context. 
    more » « less
  3. Encoding geospatial objects is fundamental for geospatial artificial intelligence (GeoAI) applications, which leverage machine learning (ML) models to analyze spatial information. Common approaches transform each object into known formats, like image and text, for compatibility with ML models. However, this process often discards crucial spatial information, such as the object’s position relative to the entire space, reducing downstream task effectiveness. Alternative encoding methods that preserve some spatial properties are often devised for specific data objects (e.g., point encoders), making them unsuitable for tasks that involve different data types (i.e., points, polylines, and polygons). To this end, we propose POLY2VEC, a polymorphic Fourier-based encoding approach that unifies the representation of geospatial objects, while preserving the essential spatial properties. POLY2VEC incorporates a learned fusion module that adaptively integrates the magnitude and phase of the Fourier transform for different tasks and geometries. We evaluate POLY2VEC on five diverse tasks, organized into two categories. The first empirically demonstrates that POLY2VEC consistently outperforms objectspecific baselines in preserving three key spatial relationships: topology, direction, and distance. The second shows that integrating POLY2VEC into a state-of-the-art GeoAI workflow improves the performance in two popular tasks: population prediction and land use inference. 
    more » « less
  4. This paper reviews trends in GeoAI research and discusses cutting-edge advances in GeoAI and its roles in accelerating environmental and social sciences. It addresses ongoing attempts to improve the predictability of GeoAI models and recent research aimed at increasing model explainability and reproducibility to ensure trustworthy geospatial findings. The paper also provides reflections on the importance of defining the science of GeoAI in terms of its fundamental principles, theories, and methods to ensure scientific rigor, social responsibility, and lasting impacts. 
    more » « less
  5. This research examines the contrasting artificial intelligence (AI) governance strategies of the European Union (EU) and China, focusing on the dichotomy between human-centric and state-driven policies. The EU's approach, exemplified by the EU AI Act, emphasizes transparency, fairness, and individual rights protection, enforcing strict regulations for high-risk AI applications to build public trust. Conversely, China's state-driven model prioritizes rapid AI deployment and national security, often at the expense of individual privacy, as seen through its flexible regulatory framework and substantial investment in AI innovation. By applying the United States' National Institute of Standards and Technology (NIST) AI Risk Management Framework's Map, Measure, Manage, and Govern functions, this study explores how both regions balance technological advancement with ethical oversight. The study ultimately suggests that a harmonized approach, integrating elements of both models, could promote responsible global AI development and regulation. 
    more » « less