skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dendrite Growth and Dead Lithium Formation in Lithium Metal Batteries and Mitigation Using a Protective Layer: A Phase-Field Study
Lithium metal batteries (LMBs) are considered one of the most promising next-generation rechargeable batteries due to their high specific capacity. However, severe dendrite growth and subsequent formation of dead lithium (Li) during the battery cycling process impede its practical application. Although extensive experimental studies have been conducted to investigate the cycling process, and several theoretical models were developed to simulate the Li dendrite growth, there are limited theoretical studies on the dead Li formation, as well as the entire cycling process. Herein, we developed a phase-field model to simulate both electroplating and stripping process in a bare Li anode and Li anode covered with a protective layer. A step function is introduced in the stripping model to capture the dynamics of dead Li. Our simulation clearly shows the growth of dendrites from a bare Li anode during charging. These dendrites detach from the bulk anode during discharging, forming dead Li. Dendrite growth becomes more severe in subsequent cycles due to enhanced surface roughness of the Li anode, resulting in an increasing amount of dead Li. In addition, it is revealed that dendrites with smaller base diameters detach faster at the base and produce more dead lithium. Meanwhile, the Li anode covered with a protective layer cycles smoothly without forming Li dendrite and dead Li. However, if the protective layer is fractured, Li metal preferentially grows into the crack due to enhanced Li-ion (Li+) flux and forms a dendrite structure after penetration through the protective layer, which accelerates the dead Li formation in the subsequent stripping process. Our work thus provides a fundamental understanding of the mechanism of dead Li formation during the charging/discharging process and sheds light on the importance of the protective layer in the prevention of dead Li in LMBs.  more » « less
Award ID(s):
2038083 2425164
PAR ID:
10570432
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
16
Issue:
42
ISSN:
1944-8244
Page Range / eLocation ID:
56947 to 56956
Subject(s) / Keyword(s):
dead lithium, protective layer, phase-field simulation, dendrite growth, cycling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Practical applications of lithium metal batteries are often limited by low cycling efficiencies and uncontrolled lithium dendrite growth caused by unstable and heterogeneous lithium‐electrolyte interfaces. To address this issue, a calix[4]pyrrole‐based wavy covalent organic framework (WCOF) is developed that acts as a protective layer to suppress Li dendrite growth and reduce side reactions on the Li anode. The presentWCOFis porous and contains calix[4]pyrrole units acting as “molecular traps” that allow efficient PF6anion capture while allowing for uniform Li+diffusion. This provides structurally stable artificial protective layers that permit high Li+transference numbers. The resulting solid electrolyte interphases permit ultralong‐term stable cycling at a current density of 1 mA cm−2and reversible lithium plating/stripping (over 2500 h) at an areal capacity of 2 mAh cm−2. The protected anodes of this study also demonstrated excellent cell stability through 260 cycles when paired with high‐voltage cathodes (NCM811 with high mass loading: 20 mg cm−2). 
    more » « less
  2. Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm􀀀 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytes for advancing performance of LMBs. 
    more » « less
  3. Instabilities during metal electrodeposition create dendrites on the plating surfaces. In high energy density lithium metal batteries (LMBs) dendrite growth causes safety issues and accelerated aging. In this paper, analytical models predict that dendrite growth can be controlled and potentially eliminated by small advective flows normal to the surface of lithium metal electrode. Electrolyte flow towards the Li metal electrode lowers the dendrite growth rate, overpotential, and impedance. Flow in the opposite direction, however, enhances the dendrite growth. For every current density, there exists a critical velocity above which dendrite growth can be totally eliminated. The critical velocity increases almost linearly with increasing current density. For typical current densities and inter-electrode separation, the critical velocity is very small, indicating the potential for practical application. 
    more » « less
  4. Abstract This work demonstrates a new approach in using metal organic framework (MOF) materials to improve Li metal batteries, a burgeoning rechargeable battery technology. Instead of using the MIL‐125‐Ti MOF structure directly, the material is decomposed into intimately‐mixed amorphous titanium dioxide and crystalline terephthalic acid. The resulting composite material outperforms the oxide alone, the organic component alone, and the parent MOF in suppressing Li dendrite growth and extending cycle life of Li metal electrodes. Coated on a commercial polypropylene separator, this material induces the formation of a desirable solid electrolyte interphase layer comprising mechanically flexible organic species and ionically conductive lithium nitride species, which in turn leads to Li||Cu and Li||Li cells that can stably operate for hundreds of charging–discharging cycles. In addition, this material strongly adsorbs lithium polysulfides and can also benefit the cathode of lithium–sulfur batteries. 
    more » « less
  5. Lithium metal as an anode has been widely accepted due to its higher negative electrochemical potential and theoretical capacity. Nevertheless, the existing safety and cyclability issues limit lithium metal anodes from practical use in high-energy density batteries. Repeated Li deposition and dissolution processes upon cycling lead to the formation of dendrites at the interface which results in reduced Li availability for electrochemical reactions, disruption in Li transport through the interface and increased safety concerns due to short circuiting. Here, we demonstrate a novel strategy using Ionic Liquid Crystals (ILCs) as the electrolyte cum pseudo-separator to suppress dendrite growth with their anisotropic properties controlling Li-ion mass transport. A thermotropic ILC with two-dimensional Li-ion conducting pathways was synthesized and characterized. Microscopic and spectroscopic analyses elucidate that the ILC formed with a smectic A phase, which can be utilized for wide temperature window operation. The results of electrochemical studies corroborate the efficacy of ILC electrolytes in mitigating dendrite formation even after 850 hours and it is further substantiated by numerical simulation and the mechanism involved in dendritic suppression was deduced. 
    more » « less