This dataset comprises a subsurface characterization of key liquefaction areas in Golbasi, Türkiye, following the February 6, 2023, Kahramanmaraş earthquake sequence. Field testing was conducted from October 30th to November 10th, 2023. The dataset includes Cone Penetration Tests (CPT) as well as borehole sampling and incorporates pore pressure dissipation measurements and standard CPT readings. High-quality subsurface investigations, such as this dataset, are a key component of liquefaction case histories. As such, this data is vital for future analyses of liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations resulting from the Kahramanmaraş earthquake sequence.
more »
« less
Subsurface Characterization of Iskenderun - 2024
This dataset comprises a subsurface characterization of key liquefaction areas in İskenderun, Türkiye, following the February 6, 2023, Kahramanmaraş earthquake sequence. Field testing was conducted from March 18 to March 27, 2024. The dataset includes Cone Penetration Tests (CPT) as well as seismic CPTs (SCPT) and incorporates pore pressure dissipation measurements, shear wave velocities, and standard CPT readings. High-quality subsurface investigations, such as this dataset, are a key component of liquefaction case histories. As such, this data is vital for future analyses of liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations resulting from the Kahramanmaraş earthquake sequence.
more »
« less
- Award ID(s):
- 2338026
- PAR ID:
- 10570510
- Publisher / Repository:
- Designsafe-CI
- Date Published:
- Subject(s) / Keyword(s):
- Kahramanmaras Earthquake Sequence Cone Penetration Testing liquefaction Iskenderun settlement Golbasi
- Format(s):
- Medium: X
- Institution:
- Georgia Institute of Technology
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This data was gathered during the Geotechnical Extreme Events Reconnaissance (GEER) efforts following the February 6, 2023, Kahramanmaraş earthquake sequence. This dataset is comprised of terrestrial lidar scan point clouds that aim to capture liquefaction-induced building settlement, building-ground interactions, and ground deformations. The objective of the reconnaissance efforts was to capture perishable data on ground failures and liquefaction-induced infrastructure damage due to these earthquakes. Reconnaissance was performed from March 27 to April 1, 2023 in and around İskenderun, Hatay; Gölbaşı, Adıyaman; and Antakya, Hatay. Lidar scans were performed in İskenderun and Gölbaşı at selected liquefaction building sites. The reconnaissance sites were selected as those where there was evidence of liquefaction (e.g., ejecta) and liquefaction-induced building settlements, as well as building-ground interactions, and site access. The processed lidar data are included as .las point cloud files; raw data are included as .fls files. The point cloud data may be viewed and analyzed in point cloud analysis software, including the opensource software CloudCompare. Additional images of the surveyed buildings are included for reference. An explanation of the data types and structure is found in the README.pdf file. These data may be used to investigate earthquake liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations. These data will be of use and interest to engineers and researchers working in the area of liquefaction ground failures and building-ground interactions. Additional information and data from this reconnaissance are available in the GEER reports, which are referenced in the "Related Works" section.more » « less
-
This data was gathered during the Geotechnical Extreme Events Reconnaissance (GEER) efforts following the February 6, 2023, Kahramanmaraş earthquake sequence. This dataset is comprised of terrestrial lidar scan point clouds that aim to capture liquefaction-induced building settlement, building-ground interactions, and ground deformations. The objective of the reconnaissance efforts was to capture perishable data on ground failures and liquefaction-induced infrastructure damage due to these earthquakes. Reconnaissance was performed from March 27 to April 1, 2023 in and around İskenderun, Hatay; Gölbaşı, Adıyaman; and Antakya, Hatay. Lidar scans were performed in İskenderun and Gölbaşı at selected liquefaction building sites. The reconnaissance sites were selected as those where there was evidence of liquefaction (e.g., ejecta) and liquefaction-induced building settlements, as well as building-ground interactions, and site access. The processed lidar data are included as .las point cloud files; raw data are included as .fls files. The point cloud data may be viewed and analyzed in point cloud analysis software, including the opensource software CloudCompare. Additional images of the surveyed buildings are included for reference. An explanation of the data types and structure is found in the README.pdf file. These data may be used to investigate earthquake liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations. These data will be of use and interest to engineers and researchers working in the area of liquefaction ground failures and building-ground interactions. Additional information and data from this reconnaissance are available in the GEER reports, which are referenced in the "Related Works" section.more » « less
-
Significant and widespread liquefaction occurred in İskenderun during the 2023 Mw 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared.more » « less
-
Significant and widespread liquefaction occurred in İskenderun during the 2023 moment magnitude (Mw) 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared.more » « less