skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 12, 2026

Title: Exploring RNA-Seq Data Analysis Through Visualization Techniques and Tools: A Systematic Review of Opportunities and Limitations for Clinical Applications
RNA sequencing (RNA-seq) has emerged as a prominent resource for transcriptomic analysis due to its ability to measure gene expression in a highly sensitive and accurate manner. With the increasing availability of RNA-seq data analysis from clinical studies and patient samples, the development of effective visualization tools for RNA-seq analysis has become increasingly important to help clinicians and biomedical researchers better understand the complex patterns of gene expression associated with health and disease. This review aims to outline the current state-of-the-art data visualization techniques and tools commonly used to frame clinical inferences from RNA-seq data and point out their benefits, applications, and limitations. A systematic review of English articles using PubMed, Scopus, Web of Science, and IEEE Xplore databases was performed. Search terms included “RNA-seq”, “visualization”, “plots”, and “clinical”. Only full-text studies reported between 2017 and 2024 were included for analysis. Following PRISMA guidelines, a total of 126 studies were identified, of which 33 studies met the inclusion criteria. We found that 18% of studies have visualization techniques and tools for circular RNA-seq data, 56% for single-cell RNA-seq data, 23% for bulk RNA-seq data, and 3% for long non-coding RNA-seq data. Overall, this review provides a comprehensive overview of the common visualization tools and their potential applications, which is a useful resource for researchers and clinicians interested in using RNA-seq data for various clinical purposes (e.g., diagnosis or prognosis).  more » « less
Award ID(s):
2334391
PAR ID:
10570733
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Bioengineering
Volume:
12
Issue:
1
ISSN:
2306-5354
Page Range / eLocation ID:
56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gene expression is the fundamental level at which the results of various genetic and regulatory programs are observable. The measurement of transcriptome-wide gene expression has convincingly switched from microarrays to sequencing in a matter of years. RNA sequencing (RNA-seq) provides a quantitative and open system for profiling transcriptional outcomes on a large scale and therefore facilitates a large diversity of applications, including basic science studies, but also agricultural or clinical situations. In the past 10 years or so, much has been learned about the characteristics of the RNA-seq data sets, as well as the performance of the myriad of methods developed. In this review, we give an overview of the developments in RNA-seq data analysis, including experimental design, with an explicit focus on the quantification of gene expression and statistical approachesfor differential expression. We also highlight emerging data types, such as single-cell RNA-seq and gene expression profiling using long-read technologies. 
    more » « less
  2. RNA sequencing (RNA-seq) has become an exemplary technology in modern biology and clinical science. Its immense popularity is due in large part to the continuous efforts of the bioinformatics community to develop accurate and scalable computational tools to analyze the enormous amounts of transcriptomic data that it produces. RNA-seq analysis enables genes and their corresponding transcripts to be probed for a variety of purposes, such as detecting novel exons or whole transcripts, assessing expression of genes and alternative transcripts, and studying alternative splicing structure. It can be a challenge, however, to obtain meaningful biological signals from raw RNA-seq data because of the enormous scale of the data as well as the inherent limitations of different sequencing technologies, such as amplification bias or biases of library preparation . The need to overcome these technical challenges has pushed the rapid development of novel computational tools, which have evolved and diversified in accordance with technological advancements, leading to the current myriad of RNA-seq tools. These tools, combined with the diverse computational skill sets of biomedical researchers, help to unlock the full potential of RNA-seq. The purpose of this review is to explain basic concepts in the computational analysis of RNA-seq data and define discipline-specific jargon. 
    more » « less
  3. Visualizing Ribo-seq and other sequencing data within genes of interest is a powerful approach to studying gene expression, but its application is limited by a lack of robust tools. Here, we introduce ggRibo, a user-friendly R package for visualizing individual gene expression, integrating Ribo-seq, RNA-seq, and other genome-wide datasets with flexible scaling options. ggRibo visualizes 3-nucleotide periodicity, a hallmark of translating ribosomes, within a gene-structure context, including introns and untranslated regions, enabling the study of novel ORFs, translation of different isoforms, and mechanisms of translational regulation. ggRibo can plot multiple Ribo-seq/RNA-seq datasets from different conditions for comparison. It also contains functions for plotting single-transcript view, reading-frame decomposition, and RNA-seq coverage alone. Importantly, ggRibo supports the visualization of other omics datasets that could also be presented with single-nucleotide resolution, such as RNA degradome, transcription start sites, translation initiation sites, and epitranscriptomic modifications. We demonstrate its utility with examples of upstream ORFs, downstream ORFs, nested ORFs, and differential isoform translation in humans,Arabidopsis, tomato, and rice. We also provide examples of multiomic comparisons that reveal insights that connect the transcriptome, translatome, and degradome. In summary, ggRibo is an advanced single-gene viewer that offers a valuable resource for studying gene expression regulation through its intuitive and flexible platform. 
    more » « less
  4. Abstract Single-cell RNA sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously. Analysis of scRNA-seq data plays an important role in the study of cell states and phenotypes, and has helped elucidate biological processes, such as those occurring during the development of complex organisms, and improved our understanding of disease states, such as cancer, diabetes, and coronavirus disease 2019 (COVID-19). Deep learning, a recent advance of artificial intelligence that has been used to address many problems involving large datasets, has also emerged as a promising tool for scRNA-seq data analysis, as it has a capacity to extract informative and compact features from noisy, heterogeneous, and high-dimensional scRNA-seq data to improve downstream analysis. The present review aims at surveying recently developed deep learning techniques in scRNA-seq data analysis, identifying key steps within the scRNA-seq data analysis pipeline that have been advanced by deep learning, and explaining the benefits of deep learning over more conventional analytic tools. Finally, we summarize the challenges in current deep learning approaches faced within scRNA-seq data and discuss potential directions for improvements in deep learning algorithms for scRNA-seq data analysis. 
    more » « less
  5. Abstract Identifying impacted pathways is important because it provides insights into the biology underlying conditions beyond the detection of differentially expressed genes. Because of the importance of such analysis, more than 100 pathway analysis methods have been developed thus far. Despite the availability of many methods, it is challenging for biomedical researchers to learn and properly perform pathway analysis. First, the sheer number of methods makes it challenging to learn and choose the correct method for a given experiment. Second, computational methods require users to be savvy with coding syntax, and comfortable with command‐line environments, areas that are unfamiliar to most life scientists. Third, as learning tools and computational methods are typically implemented only for a few species (i.e., human and some model organisms), it is difficult to perform pathway analysis on other species that are not included in many of the current pathway analysis tools. Finally, existing pathway tools do not allow researchers to combine, compare, and contrast the results of different methods and experiments for both hypothesis testing and analysis purposes. To address these challenges, we developed an open‐source R package for Consensus Pathway Analysis (RCPA) that allows researchers to conveniently: (1) download and process data from NCBI GEO; (2) perform differential analysis using established techniques developed for both microarray and sequencing data; (3) perform both gene set enrichment, as well as topology‐based pathway analysis using different methods that seek to answer different research hypotheses; (4) combine methods and datasets to find consensus results; and (5) visualize analysis results and explore significantly impacted pathways across multiple analyses. This protocol provides many example code snippets with detailed explanations and supports the analysis of more than 1000 species, two pathway databases, three differential analysis techniques, eight pathway analysis tools, six meta‐analysis methods, and two consensus analysis techniques. The package is freely available on the CRAN repository. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Processing Affymetrix microarrays Basic Protocol 2: Processing Agilent microarrays Support Protocol: Processing RNA sequencing (RNA‐Seq) data Basic Protocol 3: Differential analysis of microarray data (Affymetrix and Agilent) Basic Protocol 4: Differential analysis of RNA‐Seq data Basic Protocol 5: Gene set enrichment analysis Basic Protocol 6: Topology‐based (TB) pathway analysis Basic Protocol 7: Data integration and visualization 
    more » « less