The goal of the paper is to develop the theory of finite state mean field games with major and minor players when the state space of the game is finite. We introduce the finite player games and derive a mean field game formulation in the limit when the number of minor players tends to infinity. In this limit, we prove that the value functions of the optimization problems are viscosity solutions of PIDEs of the HJB type, and we construct the best responses for both types of players. From there, we prove existence of Nash equilibria under reasonable assumptions. Finally we prove that a form of propagation of chaos holds in the present context and use this result to prove existence of approximate Nash equilibria for the finite player games from the solutions of the mean field games. this vindicate our formulation of the mean field game problem.
more »
« less
Remarks on potential mean field games
Abstract In this expository article, we give an overview of the concept of potential mean field games of first order. We give a new proof that minimizers of the potential are equilibria by using a Lagrangian formulation. We also provide criteria to determine whether or not a game has a potential. Finally, we discuss in some depth the selection problem in mean field games, which consists in choosing one out of multiple Nash equilibria.
more »
« less
- Award ID(s):
- 2045027
- PAR ID:
- 10570752
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Research in the Mathematical Sciences
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2522-0144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The theory of Mean Field Game of Controls considers a class of mean field games where the interaction is through the joint distribution of the state and control. It is well known that, for standard mean field games, certain monotonicity conditions are crucial to guarantee the uniqueness of mean field equilibria and then the global wellposedness for master equations. In the literature the monotonicity condition could be the Lasry–Lions monotonicity, the displacement monotonicity, or the anti-monotonicity conditions. In this paper, we investigate these three types of monotonicity conditions for Mean Field Games of Controls and show their propagation along the solutions to the master equations with common noises. In particular, we extend the displacement monotonicity to semi-monotonicity, whose propagation result is new even for standard mean field games. This is the first step towards the global wellposedness theory for master equations of Mean Field Games of Controls.more » « less
-
The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping.more » « less
-
Mean-field games (MFGs) are developed to model the decision-making processes of a large number of interacting agents in multi-agent systems. This paper studies mean-field games on graphs (G-MFGs). The equilibria of G-MFGs, namely, mean-field equilibria (MFE), are challenging to solve for their high-dimensional action space because each agent has to make decisions when they are at junction nodes or on edges. Furthermore, when the initial population state varies on graphs, we have to recompute MFE, which could be computationally challenging and memory-demanding. To improve the scalability and avoid repeatedly solving G-MFGs every time their initial state changes, this paper proposes physics-informed graph neural operators (PIGNO). The PIGNO utilizes a graph neural operator to generate population dynamics, given initial population distributions. To better train the neural operator, it leverages physics knowledge to propagate population state transitions on graphs. A learning algorithm is developed, and its performance is evaluated on autonomous driving games on road networks. Our results demonstrate that the PIGNO is scalable and generalizable when tested under unseen initial conditions.more » « less
-
We study linear-quadratic stochastic differential games on directed chains inspired by the directed chain stochastic differential equations introduced by Detering, Fouque and Ichiba. We solve explicitly for Nash equilibria with a finite number of players and we study more general finite-player games with a mixture of both directed chain in- teraction and mean field interaction. We investigate and compare the corresponding games in the limit when the number of players tends to infinity. The limit is characterized by Catalan functions and the dy- namics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain, with or without the presence of mean field interaction.more » « less
An official website of the United States government
