Organic carbon (OC) is a highly diverse class of compounds that represents a small but critical fraction of the atmosphere’s chemical composition. Volatile organic compounds (VOCs), when combined with nitrogen oxides (NOx), can produce tropospheric ozone (O3), a regulated air pollutant. OC also represents a large and growing fraction of aerosol mass, either through direct emissions from sources like fossil combustion and biomass burning, or through secondary chemistry by the oxidation and subsequent reduction of vapor pressure of VOCs leading to condensational growth. Clouds droplets and precipitation can contain additional OC due to the dissolution of soluble organic gases to the aqueous phase. OC has abundantly been found in aqueous samples of clouds, fog, and precipitation, exposing these compounds to unique aqueous chemical reactions and wet deposition. However, the concentrations and controlling factors of atmospheric aqueous organic carbon remain highly unconstrained. Cloud water measurements at Whiteface Mountain in the Adirondack Mountains in upstate New York have revealed an increasing trend of Total Organic Carbon (TOC), with annual median concentrations doubling in 14 years, possibly signaling a growing trend in atmospheric OC. However, the causes and potential consequences of this trend remain unclear. Another question that has yet to be explored is if this trend in OC extends beyond WFM. To answer this question, this work explores the trends of WFM cloud water and 4 additional long-term cloud water and wet deposition datasets that have measured TOC or dissolved OC (DOC) throughout the Northeast US. These sites include Mt Washington, NH, Hubbard Brook NH, Thompson Farm NH, and Sleepers River Vermont. This work will also discuss potential hypotheses driving this increasing trend including increased biomass burning influence and increased biogenic emissions in the region.
more »
« less
This content will become publicly available on January 15, 2026
Preliminary Study of the Microbiome at Whiteface Mountain (WFM)
Whiteface Mountain (WFM) in northern NY State is the site of a historic mountaintop atmospheric observatory with an ongoing cloud water chemistry monitoring program that has been operating every summer (June through September) since 1994. Though long-term chemical analysis has been conducted, no analysis on the microbiome has been completed at WFM. Over the years, a new chemical regime has been reported in the cloudwater with missing analytes. Knowing how microbes can interact with chemicals, we hypothesize microbes are partially responsible for this shift and are crucial in understanding the chemical background of clouds. To start this study, cloudwater filters have been analyzed both chemically and microbially. Chemically, weighted averages have been calculated for each cloudwater filter based on the chemical composition of the clouds. Microbially, we have begun DNA extractions and subsequent metagenomic analysis using the Oxford Nanopore MinION using a select number of cloud water filters from 2024. Overall, this study aims to build upon microbial work accomplished by the Puy de Dôme groups and discuss the collection, storage, and analysis of cloudwater filters to connect the chemical to the microbial at WFM.
more »
« less
- Award ID(s):
- 1945563
- PAR ID:
- 10570973
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Format(s):
- Medium: X
- Location:
- New Orleans, LA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Russell, Lynn M (Ed.)Abstract. Organic acids represent an important class of compounds in the atmosphere, but there is limited research investigating their chemical production, particularly in the northeast United States. To improve our understanding of organic acid sources, a modeling analysis was performed for air masses reaching the summit of Whiteface Mountain (WFM), New York, where measurements of organic acids in cloud water have been collected. The analysis focuses on a pollution event associated with a heat wave that occurred on 1–2 July 2018 that exhibited unusually high concentrations of formic (HCOOH), acetic (CH3COOH), and oxalic (OxAc) acid in cloud water. The gas-phase production of organic acids for this pollution event was modeled using a combination of the regional transport model Weather Research and Forecasting Model with Chemistry (WRF-Chem), which gives information on transport and environmental factors affecting air parcels reaching WFM, and the Lagrangian chemical box model BOXMOX, which allows analysis of chemistry with different chemical mechanisms. Two chemical mechanisms are used in BOXMOX: (1) the Model for Ozone and Related chemical Tracers (MOZART T1) and (2) the Master Chemical Mechanism (MCM) version 3.3.1. The WRF-Chem results show that air parcels sampled during the pollution event at WFM originated in central Missouri, which has strong biogenic emissions of isoprene. Many air parcels were influenced by emissions of nitrogen oxides (NOx) from the Chicago metropolitan area. The gas-phase oxidation of isoprene and its related oxidation products was the major source of HCOOH and CH3COOH, but both mechanisms substantially underproduced both acids compared to observations. A simple gas–aqueous mechanism was included to investigate the role of aqueous chemistry in organic acid production. Aqueous chemistry did not produce more HCOOH or CH3COOH, suggesting missing chemical sources of both acids. However this aqueous chemistry was able to explain the elevated concentrations of OxAc. Anthropogenic NOx emissions from Chicago had little overall impact on the production of all three organic acids. Further studies are required to better constrain gas and aqueous production of low-molecular-weight organic acids.more » « less
-
Abstract Microorganisms play vital roles in modulating organic matter decomposition and nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial degradation of polyphenols is hindered in anoxic peat leading to polyphenol accumulation, and consequently diminished microbial activity. This model assumes that polyphenols are microbially unavailable under anoxia, a supposition that has not been thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with and without a chemically defined polyphenol to test this hypothesis, employing metabolomics and genome-resolved metaproteomics to interrogate soil microbial polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable under anoxia, we provide metabolite evidence that polyphenols are depolymerized, resulting in monomer accumulation, followed by the generation of small phenolic degradation products. Further, we show that soil microbiome function is maintained, and possibly enhanced, with polyphenol addition. In summary, this study provides chemical and enzymatic evidence that some soil microbiota can degrade polyphenols under anoxia and subvert the assumed polyphenol lock on soil microbial metabolism.more » « less
-
Abstract Recent studies have suggested that microbial aerosolization in wildfire smoke is an understudied source of microbes to the atmosphere. Wildfire smoke can travel thousands of kilometers from its source with the potential to facilitate the transport of microbes, including microbes that can have far‐reaching impacts on human or ecosystem health. However, the relevance of longer‐range detection of microbes in smoke plumes remains undetermined, as previous studies have mainly focused on analyses of bioaerosols collected adjacent to or directly above wildfires. Therefore, we investigated whether wildfire smoke estimated to originate >30 km from different wildfire sources would contain detectable levels of bacterial and fungal DNA at ground level, hypothesizing that smoke‐impacted air would harbor greater amounts and a distinct composition of microbes as compared to ambient air. We used cultivation‐independent approaches to analyze 150 filters collected over time from three sampling locations in the western United States, of which 34 filters were determined to capture wildfire smoke events. Contrary to our hypothesis, smoke‐impacted samples harbored lower amounts of microbial DNA. Likewise, there was a limited signal in the composition of the microbial assemblages detected in smoke‐affected samples as compared to ambient air, but we did find that changes in humidity were associated with temporal variation in the composition of the bacterial and fungal bioaerosols. With our study design, we were unable to detect a robust and distinct microbial signal in ground‐level smoke originating from distant wildfires.more » « less
-
Whiteface Mountain is home to an historical cloud water monitoring site, with cloud water collection dating as far back as the 1970s. The cloud collection was largely founded to investigate and monitor the growing problems associated with acid deposition with regular monitoring beginning in 1994 and continuing to this date. Findings from sites like Whiteface Mountain help contributed to the Clean Air Act Amendments of 1990s which contributed to significant reductions in emissions of SO2 and NOx, leading to significant decreases in SO4 and NO3 concentrations in both Whiteface Mountain cloud water and NADP National Trend Network sites nationwide. Recently, a significant milestone for acid deposition was reached at WFM: median concentrations of Ca were higher than SO4 concentrations, with a correspondingly high median pH of 6.3 in 2020. Additionally, there are increasing trends in Ca, K, Mg, and potentially total organic carbon, while NH4 and NO3 exhibit no trend. These changes point to a considerably different chemical system that have important implications for not only acid deposition but for nitrogen deposition, base cation deposition, and secondary organic and inorganic aerosol formation. This presentation will discuss the significant changes to major base cations and organic carbon (total organic carbon and organic acids) and their inter-relationships. Statistical techniques such as factor analysis and positive matrix factorization will be used for source apportionment. Comparisons of cloud composition will be made with regional NADP National Trend Network sites to investigate the potential changes in base cation deposition. Lastly, future implications will be discussed for air quality, ecosystem health, and climate.more » « less