skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RADseq data reveal a lack of admixture in a mouse lemur contact zone contrary to previous microsatellite results
Microsatellites have been a workhorse of evolutionary genetic studies for decades and are still commonly in use for estimating signatures of genetic diversity at the population and species level across a multitude of taxa. Yet, the very high mutation rate of these loci is a double-edged sword, conferring great sensitivity at shallow levels of analysis (e.g. paternity analysis) but yielding considerable uncertainty for deeper evolutionary comparisons. For the present study, we used reduced representation genome-wide data (restriction site-associated DNA sequencing (RADseq)) to test for patterns of interspecific hybridization previously characterized using microsatellite data in a contact zone between two closely related mouse lemur species in Madagascar (Microcebus murinusandMicrocebus griseorufus). We revisit this system by examining populations in, near, and far from the contact zone, including many of the same individuals that had previously been identified as hybrids with microsatellite data. Surprisingly, we find no evidence for admixed nuclear ancestry. Instead, re-analyses of microsatellite data and simulations suggest that previously inferred hybrids were false positives and that the program NewHybridscan be particularly sensitive to erroneously inferring hybrid ancestry. Combined with results from coalescent-based analyses and evidence for local syntopic co-occurrence, we conclude that the two mouse lemur species are in fact completely reproductively isolated, thus providing a new understanding of the evolutionary rate whereby reproductive isolation can be achieved in a primate.  more » « less
Award ID(s):
2148914
PAR ID:
10571026
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society Publishing
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1980
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract When organisms experience secondary contact after allopatric divergence, genomic regions can introgress differentially depending on their relationships with adaptation, reproductive isolation, recombination, and drift. Analyses of genome‐wide patterns of divergence and introgression could provide insight into the outcomes of hybridization and the potential relationship between allopatric divergence and reproductive isolation. Here, we generate population genetic data (26,262 SNPs; 353 individuals) using a reduced‐representation sequencing approach to quantify patterns of ancestry, differentiation, and introgression between a pair of ecologically distinct mammals—the desert woodrat (N.lepida) and Bryant's woodrat (N.bryanti)—that hybridize at a sharp ecotone in southern California. Individual ancestry estimates confirmed that hybrids were rare in this bimodal hybrid zone, and entirely consisted of a few F1individuals and a broad range of multigenerational backcrosses. Genomic cline analyses indicated more than half of loci had elevated introgression from one genomic background into the other. However, introgression was not associated with relative or absolute measures of divergence, and loci with extreme values for both were not typically found near detoxification enzymes previously implicated in dietary specialization for woodrats. The decoupling of differentiation and introgression suggests that processes other than adaptation, such as drift, may underlie the extreme clines at this contact zone. 
    more » « less
  2. Payseur, Bret (Ed.)
    Secondary contact between closely related taxa represents a “moment of truth” for speciation—an opportunity to test the efficacy of reproductive isolation that evolved in allopatry and to identify the genetic, behavioral, and/or ecological barriers that separate species in sympatry. Sex chromosomes are known to rapidly accumulate differences between species, an effect that may be exacerbated for neo-sex chromosomes that are transitioning from autosomal to sex-specific inheritance. Here we report that, in the Solomon Islands, two closely related bird species in the honeyeater family—Myzomela cardinalisandMyzomela tristrami—carry neo-sex chromosomes and have come into recent secondary contact after ~1.1 my of geographic isolation. Hybrids of the two species were first observed in sympatry ~100 years ago. To determine the genetic consequences of hybridization, we use population genomic analyses of individuals sampled in allopatry and in sympatry to characterize gene flow in the contact zone. Using genome-wide estimates of diversity, differentiation, and divergence, we find that the degree and direction of introgression varies dramatically across the genome. For sympatric birds, autosomal introgression is bidirectional, with phenotypic hybrids and phenotypic parentals of both species showing admixed ancestry. In other regions of the genome, however, the story is different. While introgression on the Z/neo-Z-linked sequence is limited, introgression of W/neo-W regions and mitochondrial sequence (mtDNA) is highly asymmetric, moving only from the invadingM.cardinalisto the residentM.tristrami. The recent hybridization between these species has thus enabled gene flow in some genomic regions but the interaction of admixture, asymmetric mate choice, and/or natural selection has led to the variation in the amount and direction of gene flow at sex-linked regions of the genome. 
    more » « less
  3. Abstract Contact zones provide important insights into the evolutionary processes that underlie lineage divergence and speciation. Here, we use a contact zone to ascertain speciation potential in the red‐eyed treefrog (Agalychnis callidryas), a brightly coloured and polymorphic frog that exhibits unusually high levels of intraspecific variation. Populations ofA. callidryasdiffer in a number of traits, several of which are known sexual signals that mediate premating reproductive isolation in allopatric populations. Along the Caribbean coast of Costa Rica, a ~100 km contact zone, situated between two phenotypically and genetically divergent parent populations, contains multiple colour pattern phenotypes and late‐generation hybrids. This contact zone provides the opportunity to examine processes that are important in the earliest stages of lineage divergence. We performed analyses of colour pattern variation in five contact zone sites and six parental sites and found complex, continuous colour variation along the contact zone. We found discordance between the geographic distribution of colour pattern and previously described genomic population structure. We then used a parental site and contact zone site to measure assortative mating and directional selection from naturally‐occurring amplectant mating pairs. We found assortative mating in a parental population, but no assortative mating in the contact zone. Furthermore, we uncovered evidence of directional preference towards the adjacent parental phenotype in the contact zone population, but no directional preference in the parent population. Combined, these data provide insights into potential dynamics at the contact zone borders and indicate that incipient speciation between parent populations will be slowed. 
    more » « less
  4. Abstract Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long‐read (Oxford nanopore) whole‐genome sequencing and a hybrid zone between twoLycaeidesbutterfly taxa (L.melissaand Jackson HoleLycaeides) to comprehensively evaluate genome‐wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry‐informative SVs exhibiting genomic clines that deviated from null expectations based on genome‐average ancestry. Overall, hybrids exhibited a directional shift towards Jackson HoleLycaeidesancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average than SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess ancestry from Jackson HoleLycaeides. Excess Jackson HoleLycaeidesancestry in hybrids was also especially pronounced for Z‐linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might disproportionately affect hybrid fitness and thus contribute to reproductive isolation. 
    more » « less
  5. Australia has the highest historically recorded rate of mammalian extinction in the world, with 34 terrestrial species declared extinct since European colonization in 1788. Among Australian mammals, rodents have been the most severely affected by these recent extinctions; however, given a sparse historical record, the scale and timing of their decline remain unresolved. Using museum specimens up to 184 y old, we generate genomic-scale data from across the entire assemblage of Australian hydromyine rodents (i.e., eight extinct species and their 42 living relatives). We reconstruct a phylogenomic tree for these species spanning ∼5.2 million years, revealing a cumulative total of 10 million years (>10%) of unique evolutionary history lost to extinction within the past ∼150 y. We find no evidence for reduced genetic diversity in extinct species just prior to or during decline, indicating that their extinction was extremely rapid. This suggests that populations of extinct Australian rodents were large prior to European colonization, and that genetic diversity does not necessarily protect species from catastrophic extinction. In addition, comparative analyses suggest that body size and biome interact to predict extinction and decline, with larger species more likely to go extinct. Finally, we taxonomically resurrect a species from extinction, Gould’s mouse (Pseudomys gouldiiWaterhouse, 1839), which survives as an island population in Shark Bay, Western Australia (currently classified asPseudomys fieldiWaite, 1896). With unprecedented sampling across a radiation of extinct and living species, we unlock a previously inaccessible historical perspective on extinction in Australia. Our results highlight the capacity of collections-based research to inform conservation and management of persisting species. 
    more » « less