ABSTRACT:The chemo-mechanical loading of rocks causes the dissolution and precipitation of multiple phases in the rock. This dissolution and precipitation of load-bearing mineral phases lead to the stress redistribution in neighboring phases, which in turn results in deformational changes of the sample composite. The aim of this study is to investigate the link between microstructural evolution and creep behavior of shale rocks subjected to chemo-mechanical loading through modeling time-dependent deformation induced by the dissolution-precipitation process. The model couples the microstructural evolution of the shale rocks with the stress/strain fields inside the material as a function of time. The modeling effort is supplemented with an experimental study where shale rocks were exposed to CO2-rich brine under high temperature and pressure conditions. 3D snapshots of the sample microstructure were generated using segmented micro-CT images of the shale sample. The time-evolving microstructures were then integrated with the Finite element-based mechanical model to simulate the creep induced by dissolution and precipitation processes independent of the intrinsic viscoelasticity/viscoplasticity of the mineral phases. After computation of the time-dependent viscoelastic properties of the shale composite, the combined microstructure model and finite element model were utilized to predict the time-dependent stress and strain fields in different zones of reacted shale. 1. INTRODUCTIONDetermination of viscous behavior of shale rocks is key in wide range of applications such as stability of reservoirs, stability of geo-structures subjected to environmental forcing, underground storage of hazardous materials and hydraulic fracturing. Short-term creep strains in hydraulic fracturing can change stress fields and in turn can impact the hydraulic fracturing procedures(H. Sone & Zoback, 2010; Hiroki Sone & Zoback, 2013). While long-term creep strains can hamper the reservoir performance due to the reduction in permeability of the reservoir by closing of fractures and fissures(Du, Hu, Meegoda, & Zhang, 2018; Rybacki, Meier, & Dresen, 2016; Sharma, Prakash, & Abedi, 2019; Hiroki Sone & Zoback, 2014). Owing to these significance of creep strain, it is important to understand the viscoelastic/viscoplastic behavior of shales. 
                        more » 
                        « less   
                    
                            
                            Fracture Characteristics of Shale: Unraveling CO2-Driven Mechanical Metamorphosis at Microscale
                        
                    
    
            ABSTRACT:This study investigates the distinction between unreacted shale samples and those exposed to CO2-rich brine under elevated temperature (100°C) and pressure (1800 psi) conditions over 28 days. Samples underwent scratch testing under constant loading to ensure independent penetration depth, circumventing variability associated with load-dependent outcomes prevalent in progressive loading methodologies. Vertical hardness profiles revealed significant variations between reacted and unreacted regions, influenced by differential dissolution and precipitation characteristics, while horizontal hardness provided limited insights, particularly in the reacted region where higher tangential forces and deeper scratches indicated greater material compressibility. Distinct scratch path variations were observed, with fractures absent in the ductile reacted region at lower testing forces. The shale samples were sourced from the Eagle Ford Formation, providing insights into the mechanical response of carbonate-rich shale rocks in extreme environments. This research enhances understanding of shale's mechanical properties and material responses under diverse operational conditions, elucidating interactions with influential environmental factors, particularly in CO2-exposed scenarios. Conducted at a microscale level, this study offers detailed insights into material behavior, crucial for predicting long-term stability of geostructures exposed to reactive brine and potential CO2 leakage in subsurface reservoirs. 1. INTRODUCTIONThe investigation into chemical interactions between carbonate rocks and acidic brine is cruical for understanding complex mechanical and microstructural transformations essential for applications like geostructure stability, CO2 storage, and energy exploitation. Under elevated pressure and temperature conditions, the equilibrium between injected fluids and rocks undergoes alterations, leading to geochemical responses, especially with the presence of CO2 as a supercritical phase or in aqueous form (Prakash et al. 2023a; Prakash et al. 2022). In this context, investigating fracture properties becomes essential, aiming to comprehend the development and propagation of fractures within reacted formations to evaluate structural integrity and potential pathways for fluid migration.Prior geochemical investigations have explored the localized repercussions of CO2 attacks on rock permeability, shedding light on alterations attributed to carbonate precipitation sealing fractures and pores or the dissolution of diverse minerals (Burnside et al. 2013; Minardi et al. 2021). Shale rocks exposed to acidic brine predominantly undergo carbonate reactions, particularly carbonates dissolution and precipitation (Prakash et al., 2022; Prakash et al. 2023b). Experimental studies on fracture mechanics and mechanical properties have utilized conventional methods such as single edge notched bend, chevron notched beam, three-point bending, and semi-circular bending tests, acknowledging their inherent limitations (Smith & Chowdary, 1975; Bazant and Kazemi, 1990; Helmer et al. 2014; Dubey et al., 2020). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2045242
- PAR ID:
- 10571068
- Publisher / Repository:
- ARMA
- Date Published:
- Format(s):
- Medium: X
- Location:
- Golden, Colorado, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts.more » « less
- 
            ABSTRACT:Long-term deep sequestration of CO2-rich brine in deep formations of ultramafic rock (e.g. Oman serpentinized harzburgite) will be feasible only if a network of hydraulic cracks could be produced and made to grow for years and decades. Fraccing of gas- or oil-bearing shales has a similar objective. The following points are planned to be made in the presentation in Golden. 1) A branching of fracture can be analyzed only if the fracture is modeled by a band with triaxial tensorial damage, for which the new smooth Lagrangian crack band model is effective. 2) To achieve a progressive growth of the fracture network one will need to manipulate the osmotic pressure gradients by changing alkali metal ion concentration in pore fluid. 3) A standardized experimental framework to measure rock permeability at various ion concentrations and various osmotic pressure gradients is needed, and will be presented. 1 INTRODUCTIONCarbon dioxide (CO2) emissions by human activities is the largest contributor to global warming; therefore, effective carbon sequestration technologies attract great amount of interest. One emerging and promising technology for storing CO2 in the subsurface permanently is through carbon mineralization in mafic and ultramafic rock (Kelemen and Matter, 2008). Despite the abundance of these types of rock in the Earth's upper crust (Matter et al., 2016), the rate of this process in nature is too slow to reduce CO2 emissions effectively (Seifritz, 1990). One of the key challenges to achieve a sustainable and large-scale storage of CO2 by mineralization is to engineer a progressive growth of a fracture network conveying water with dissolved CO2 to reach a gradually increasing volume of the mafic rock formation. The CO2 rich water often cannot penetrate the tight matrix of silica-rich serpentinized harzburgites because under high concentrations of CO2, the wetting angle of CO2 -bearing water-rock-rock interface exceeds the critical value of 60 degrees. Therefore, the presence of a family of cracks is the only means by which CO2 -bearing fluids can interact with matrix of ultramafic rock (Bruce Watson and Brenan, 1987). Lateral fracture branching from a major fracture provides a sustainable fluid pathway and therefore is essential for continued rock-water geochemical reactions that lead to mineralization of carbonate minerals. Realistic computational modeling of hydraulic fractures in peridotite or basalt must involve lateral fracture branching and account for stress distribution changes between solid and fluid phases under constant tectonic stress, triggered by pore exposure to fluid pressure in hydraulic cracks.more » « less
- 
            ABSTRACT:Due to rock mass being commonly subjected to compressive or shear loading, the mode II fracture toughness is an important material parameter for rocks. Fracturing in rocks is governed by the behavior of a nonlinear region surrounding the crack tip called the fracture process zone (FPZ). However, the characteristics of mode II fracture are still determined based on the linear elastic fracture mechanics (LEFM), which assumes that a pure mode II loading results in a pure mode II fracture. In this study, the FPZ development in Barre granite specimens under mode II loading was investigated using the short beam compression (SBC) test. Additionally, the influence of lateral confinement on various characteristics of mode II fracture was studied. The experimental setup included the simultaneous monitoring of surface deformation using the two-dimensional digital image correlation technique (2D-DIC) to identify fracture mode and characterize the FPZ evolution in Barre granite specimens. The 2D-DIC analysis showed a dominant mixed-mode I/II fracture in the ligament between two notches, irrespective of confinement level on the SBC specimens. The influence of confinement on the SBC specimens was assessed by analyzing the evolution of crack displacement and changes in value of mode II fracture toughness. Larger levels of damage in confined specimens were observed prior to the failure than the unconfined specimens, indicating an increase in the fracture resistance and therefore mode II fracture toughness with the confining stress. 1. INTRODUCTIONThe fracturing in laboratory-scale rock specimens is often characterized by the deformation of the inelastic region surrounding the crack tips, also known as the fracture process zone (FPZ) (Backers et al., 2005; Ghamgosar and Erarslan, 2016). While the influence of the FPZ on mode I fracture in rocks has been extensively investigated, there are limited studies on FPZ development in rocks under pure mode II loading (Ji et al., 2016; Lin et al., 2020; Garg et al., 2021; Li et al., 2021).more » « less
- 
            We investigate the mode 1 fracture toughness and its anisotropy of Poorman Schist rocks recovered from the Enhanced Geothermal Systems Collaboration (EGS Collab) Experiment 1 site. The EGS Collab team is conducting a series of intermediate (10-20m) scale stimulation and inter-well flow tests with comprehensive instrumentation and characterization at the Sanford Underground Research Facility to validate existing theories and description of hydraulic fractures propagation and associated fluid flow. An important parameter to constrain is how the fracture toughness varies depending on the orientation of the fracture and the direction of fracture propagation, which may have controls on hydraulic fracture propagation. Fracture toughness relative to foliation orientation was determined through the utilization of Cracked Chevron Notched Brazilian Disk (CCNBD) samples in three different orientations (Divider, Arrester, and Foliation Splitting/Short Transverse). Each sample group contains at least three 25.4 mm diameter and 12.7 mm thick CCNBD samples, one of each sample type. Arrester and Foliation Splitting samples were obtained from the same sub-core while Divider samples were obtained from a separate sub-core obtained in close proximity. We found fracture toughness to be weakest in the Foliation Splitting orientation and strongest in the Divider orientation, similar to findings from anisotropic fracture toughness measured in shale rocks. Our findings on the influence of foliation orientation on fracture toughness are presented here.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    