Researchers at UNIVERSITY developed, piloted, and examined a community-engaged STEM learning environment at a university in Indiana. This summer, the MODEL developed from this pilot was adapted and replicated at two other universities. Over 50 students (high school and college) participated in the three regions in the Midwest in a community-engaged internship experience during the summer of 2022. Students worked on project teams of 4-6 students on a community-identified project for 8 weeks. Local high school teachers managed projects and community partners served as technical mentors as students completed their paid internship, which culminated with a formal presentation and product to their community partner. The larger research effort uses mixed-methods data collection, including surveys and interviews, to examine a variety of outcomes, including dispositional changes in STEM self-efficacy and identity. Students completed surveys and reflections at multiple points throughout their internship, including a retrospective pre/post survey capturing dispositional shifts during the experience The results of the internship experience on student intern participants' educational and professional plans at the 3 sites are evaluated in this paper. Results show significant gains on items related to professional discernment (desire to work in a STEM field, use technical skills, on open-ended problems for the betterment of society) for participants at all sites.
more »
« less
A tool for clarifying expectations in undergraduate research experiences
ABSTRACT Articulating clear and achievable expectations is fundamental to both education and organizational management. In this article, we provide a simple intervention for clarifying expectations–and establishing that these expectations have been understood–which proved beneficial both to community college interns and to their internship mentors in biotech-related undergraduate research experiences. Internship mentors were asked to utilize a simple Expectation Clarity Tool to outline the expectations, success metrics, baseline assessments, and training strategy and support that would be foundational to their intern’s project. These included expectations around conceptual, technical, performance, and professional skills and behaviors. Concurrently, but independently, community college interns were asked to complete the same type of exercise as a way of identifying gaps in their knowledge and understanding of their mentor’s expectations and their internship project. The mentor’s completed Expectation Clarity Tool was then shared with their intern. As a result of completing this relatively simple intervention, the majority of mentors reported that it increased their confidence as a mentor, taught them a new mentoring skill, changed how they will mentor trainees moving forward, and positively impacted their relationship with their trainee. On the intern side, the majority of interns reported that engaging in this intervention, both as an independent exercise and in obtaining their mentor’s completed Expectation Clarity Tool, increased their confidence as an intern and positively impacted the success of their internship.
more »
« less
- PAR ID:
- 10571099
- Editor(s):
- Barker, Megan K
- Publisher / Repository:
- Journal of Microbiology & Biology Education
- Date Published:
- Journal Name:
- Journal of Microbiology & Biology Education
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1935-7877
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce.more » « less
-
This article describes how combining coaching techniques with mentoring skills can positively impact the quality of grant proposals submitted to the National Science Foundation Advanced Technological Education (NSF ATE). The research findings are based on (1) a foundational pilot study conducted through the National CyberWatch Center that ended in October 2020 and (2) an independent follow-on mentoring project named Fortifying Cybersecurity and Computing Education through ATE Grants (FORCCE-ATE) mentoring project. The FORCCE-ATE model is differentiated from other ATE mentoring initiatives in the method that college faculty mentors are trained with fundamental coaching skills reinforced through multiple practicum sessions (triads). An iterative approach was used to improve the mentor-coach training each year of the project continuously. The mentor-coaches applied their blended mentoring-coaching skills to develop competitive NSF ATE proposals when working with their community college teams. Qualitative data was collected and analyzed by an experienced, independent project evaluator. The evaluator’s results show that training mentors with the coaching skills of careful listening and probing questions improves communication and rapport among mentor-coach and mentee team members.more » « less
-
This paper describes an NSF ITEST project that addresses the need to attract, motivate, prepare and support a more diverse engineering workforce. The Build a Better Book (BBB) project (award no. 2049109) engages teens in an engineering design experience grounded in principles of universal design and focused on engineering for accessibility. From 2022-2024, the project team facilitated eight teen internship programs at four sites around the country, including a university, public library, high school, and science center. Regardless of location or format, all programs incorporated several key elements, based on the project’s underlying theoretical framework, including: authentic engineering projects developed in collaboration with community clients that center empathy and accessible design; settings and processes that simulated real-world work environments, including an emphasis on intern agency, collaboration, and accountability; and mentorship, training and support provided throughout the experience. Internship sites strived to engage a diverse cohort of interns who came to the program with varied levels of interest in engineering. Using a mix of qualitative and quantitative methods, including pre-post surveys, audio reflections, and focus group discussions, the team assessed teens’ motivations to participate in the program and measured the impact of the internship program on teens’ perceptions of engineering, their confidence and competence in an array of technical and general workplace skills, and their awareness of disabilities and the importance of universal design. Over the three-year period, 184 teens across the four sites participated in the internship program and of these, 152 participated in the research study. Results suggest that the human-centered focus of the internship motivated youth to participate, and the experience expanded their perceptions of engineering, increased their confidence and competency with technical and general workplace skills, and significantly increased their awareness of accessibility issues. Ongoing and future analyses will examine the relative impacts of different educational environments and program formats on intended outcomes and assess the longer-term impacts of the BBB teen internship experience by surveying program alumni one to three years after their participation.more » « less
-
BackgroundIncreasingly, college science courses are transitioning from a traditional lecture format to active learning because students learn more and fail less frequently when they engage in their learning through activities and discussions in class. Fear of negative evaluation (FNE), defined as a student’s sense of dread associated with being unfavorably evaluated while participating in a social situation, discourages undergraduates from participating in small group discussions, whole class discussions, and conversing one-on-one with instructors. ObjectiveThis study aims to evaluate the acceptability of a novel digital single-session intervention and to assess the feasibility of implementing it in a large enrollment college science course taught in an active learning way. MethodsTo equip undergraduates with skills to cope with FNE and bolster their confidence, clinical psychologists and biology education researchers developed Project Engage, a digital, self-guided single-session intervention for college students. It teaches students strategies for coping with FNE to bolster their confidence. Project Engage provides biologically informed psychoeducation, uses interactive elements for engagement, and helps generate a personalized action plan. We conducted a 2-armed randomized controlled trial to evaluate the acceptability and the preliminary effectiveness of Project Engage compared with an active control condition that provides information on available resources on the college campus. ResultsIn a study of 282 upper-level physiology students, participants randomized to complete Project Engage reported a greater increase in overall confidence in engaging in small group discussions (P=.01) and whole class discussions (P<.001), but not in one-on-one interactions with instructors (P=.05), from baseline to immediately after intervention outcomes, compared with participants in an active control condition. Project Engage received a good acceptability rating (1.22 on a scale of –2 to +2) and had a high completion rate (>97%). ConclusionsThis study provides a foundation for a freely available, easily accessible intervention to bolster student confidence for contributing in class. Trial RegistrationOSF Registries osf.io/4ca68 http://osf.io/4ca68more » « less
An official website of the United States government

