Groundwater in the McMurdo Dry Valleys of Antarctica is commonly enriched in calcium and chloride, in contrast to surface and groundwater in temperate regions, where calcium chemistry is largely controlled by the dissolution of carbonates and sulfates. These Antarctic Ca-Cl brines have extremely low freezing points, which leads to moist soil conditions that persist unfrozen and resist evaporation, even in cold, arid conditions. Several hypotheses exist to explain these unusual excess-calcium solutions, including salt deliquescence and differential salt mobility and cation exchange. Although the cation exchange mechanism was shown to explain the chemistry of pore waters in permafrost cores from several meters depth, it has not been evaluated for near-surface groundwater and wetland features (water tracks) in which excess-calcium pore-water solutions are common. Here, we use soluble salt and exchangeable cation concentrations to determine whether excess calcium is present in water-track brines and if cation exchange could be responsible for calcium enrichment in these cold desert groundwaters. We show that calcium enrichment by cation exchange is not occurring universally across the McMurdo Dry Valleys. Instead, evidence of the present-day formation of Ca-Cl−rich brines by cation exchange is focused in a geographically specific location in Taylor Valley, with hydrological position, microclimate, soil depth, and organic matter influencing the spatial extent of cation exchange reactions. Up-valley sites may be too cold and dry for widespread exchange, and warm and wet coastal sites are interpreted to host sediments whose exchange reactions have already gone to completion. We argue that exchangeable cation ratios can be used as a signature of past freeze-concentration of brines and exchange reactions, and thus could be considered a geochemical proxy for past groundwater presence in planetary permafrost settings. Correlations between water-track organic matter, fine sediment concentration, and cation exchange capacity suggest that water tracks may be sites of enhanced biogeochemical cycling in cold desert soils and serve as a model for predicting how active layers in the Antarctic will participate in biogeochemical cycling during periods of future thaw. 
                        more » 
                        « less   
                    
                            
                            Quantifying exchangeable base cations in permafrost: a reserve of nutrients about to thaw
                        
                    
    
            Abstract. Permafrost ecosystems are limited in nutrients forvegetation development and constrain the biological activity to the activelayer. Upon Arctic warming, permafrost thaw exposes large amounts of soilorganic carbon (SOC) to decomposition and minerals to weathering but alsoreleases organic and mineral soil material that may directly influence thesoil exchange properties (cation exchange capacity, CEC, and base saturation,BS). The soil exchange properties are key for nutrient base cation supply(Ca2+, K+, Mg2+, and Na+) for vegetation growth anddevelopment. In this study, we investigate the distributions of soil exchangeproperties within Arctic tundra permafrost soils at Eight Mile Lake(Interior Alaska, USA) because they will dictate the potential reservoir ofnewly thawed nutrients and thereby influence soil biological activity andvegetation nutrient sources. Our results highlight much lower CEC density insurface horizons (∼9400 cmolc m−3) than in the mineralhorizons of the active layer (∼16 000 cmolc m−3)or in permafrost soil horizons (∼12 000 cmolc m−3). Together, with the overall increase in CEC density with depth andthe overall increase in BS (percentage of CEC occupied by exchangeable basecations Ca2+, K+, Mg2+, and Na+) with depth (from∼19 % in organic surface horizons to 62 % in permafrost soilhorizons), the total exchangeable base cation density (Ca2+, K+,Mg2+, and Na+ in g m−3) is up to 5 times higher in thepermafrost than in the active layer. More specifically, the exchangeablebase cation density in the 20 cm upper part of permafrost about to thaw is∼850 g m−3 for Caexch, 45 g m−3 forKexch, 200 g m−3 for Mgexch, and 150 g m−3 forNaexch. This estimate is needed for future ecosystem prediction modelsto provide constraints on the size of the reservoir in exchangeablenutrients (Ca, K, Mg, and Na) about to thaw. All data described in this paper are stored in Dataverse, the online repository of Université catholique de Louvain, and are accessible through the following DOI: https://doi.org/10.14428/DVN/FQVMEP (Mauclet et al., 2022b). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2224776
- PAR ID:
- 10571109
- Publisher / Repository:
- Copernicus Publications
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 15
- Issue:
- 9
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 3891 to 3904
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Freshwater salinization syndrome (FSS) refers to the suite of interactive effects of salt ions on degradation of physical, biological,and social systems. Best management practices (BMPs), which are methods to effectively reduce runoff and nonpoint source pollution (stormwater, nutrients, sediments), do not typically consider management of salt pollution. We investigate impacts of FSS on mobilization of salts, nutrients, and metals in urban streams and storm water BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic USA and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show 1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g.,similar to the way concentrations increase during other soil disturbance activities); 2) sharp declines in pH (acidification) in response to road salt applications because of mobilization of H+ from soil exchange sites by Na+; 3) sharp increases inorganic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications, likely because of lysing cells and changes insolubility; 4) substantial retention (~30–40%) of Na+ in stormwater BMP sediments and floodplains in response to salinization; 5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients(N, P), and trace metals(Cu, Sr) from stormwater BMPs and restored streams in response to FSS; 6) downstream increasing loads ofCl–, SO42–, Br–, F–,andI–along flowpaths through urbanstreams and P release from urban stormwater BMPs in response to salinization; and 7)a substantial annual reduction (>50%) in Na+concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compare our original results with published metrics of contaminant retention and release across a broad range of stormwater BMPs from North America and Europe.Overall, urban streams and stormwater BMPs consistently retain Na+ and Cl–but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater BMPs. Reducing diverse chemical cocktails of contaminants mobilized by freshwater salinization is a priority for effectively and holistically restoring urban waters.more » « less
- 
            Abstract Northern circumpolar permafrost thaw affects global carbon cycling, as large amounts of stored soil carbon becomes accessible to microbial breakdown under a warming climate. The magnitude of carbon release is linked to the extent of permafrost thaw, which is locally variable and controlled by soil thermodynamics. Soil thermodynamic properties, such as thermal diffusivity, govern the reactivity of the soil‐atmosphere thermal gradient, and are controlled by soil composition and drainage. In order to project permafrost thaw for an Alaskan tundra experimental site, we used seven years of site data to calibrate a soil thermodynamic model using a data assimilation technique. The model reproduced seasonal and interannual temperature dynamics for shallow (5–40 cm) and deep soil layers (2–4 m), and simulations of seasonal thaw depth closely matched observed data. The model was then used to project permafrost thaw at the site to the year 2100 using climate forcing data for three future climate scenarios (RCP 4.5, 6.0, and 8.5). Minimal permafrost thawing occurred until mean annual air temperatures rose above the freezing point, after which we measured over a 1 m increase in thaw depth for every 1 °C rise in mean annual air temperature. Under no projected warming scenario was permafrost remaining in the upper 3 m of soil by 2100. We demonstrated an effective data assimilation method that optimizes parameterization of a soil thermodynamic model. The sensitivity of local permafrost to climate warming illustrates the vulnerability of sub‐Arctic tundra ecosystems to significant and rapid soil thawing.more » « less
- 
            null (Ed.)Relic charcoal hearths (RCHs) have produced distinct legacy effects in forest soils around the world. Recently, LiDAR imagery has revealed thousands of 18th–early 20th century RCHs in Litchfield County, Connecticut, USA; however, the effects of RCHs on a landscape-scale are not well-documented, particularly fine-scale heterogeneity within RCHs and surrounding soils. This study examines the long-term impacts of charcoal production by measuring RCH soil chemical and physical properties from three perspectives: (1) compared to adjacent reference sites (RSadj), (2) laterally at systematic distances away from the RCH center, and (3) vertically within the RCH soil profile. Mean charcoal abundance was greater in RCH sites than RSadj (p < 0.01). Soil organic carbon (SOC), total C, and extractable Ca2+, Mg2+, Na+ were greater in RCH sites as compared to RSadj (p < 0.01), and available phosphorus (p < 0.01), K+, and trace elements (Mo, Ag, Hg, and Se) were lower (p < 0.05). In vertical profiles, many RCHs had 2 charcoal-rich layers within the anthropic epipedon, demonstrating multiple episodes of charcoal production. Peaks in SOC, C:N, Ca2+, Mg2+ corresponded with charcoal-rich layers. Systematic transect sampling across the RCH boundary identified charcoal fragments in soils at distances up to 25 m beyond the RCH boundary, increasing the surface-level (0–15 cm) area of impact for an individual RCH by more than 30×, from a 5-m radius (RCH area = 78.5 m2) to a 30-m radius (total area of impact = 2826 m2). These findings capture fine-scale variations within and among RCH and reference sites and contribute to estimating the total area of forest soils impacted by historical charcoal production.more » « less
- 
            Linking permafrost to the abundance, biomass, and energy density of fish in Arctic headwater streamsAbstract Permafrost thaw alters groundwater flow, river hydrology, stream‐catchment interactions, and the availability of carbon and nutrients in headwater streams. The impact of permafrost on watershed hydrology and biogeochemistry of headwater streams has been demonstrated, but there is little understanding of how permafrost influences fish in these ecosystems. We examined relations among permafrost characteristics, the resulting changes in water temperature, stream hydrology (e.g., discharge flashiness), and macroinvertebrates, with the abundance, biomass, and energy density of juvenile Dolly Varden (Salvelinus malma) and Arctic Grayling (Thymallus arcticus) across 10 headwater streams in northwestern Alaska. Macroinvertebrate density was driven by concentrations of dissolved carbon and nutrients supporting stream food webs. Dolly Varden abundance was primarily related to water temperature with fewer fish in warmer streams, whereas Dolly Varden energy density decreased with the flashiness of the headwater streams. Dolly Varden biomass was related to both temperature and bottom‐up food web effects. The energy density of Arctic Grayling decreased with warmer temperatures and discharge flashiness. These relations demonstrate the importance of terrestrial–aquatic connections in permafrost landscapes and indicate the complexity of landscape effects on fish. Because permafrost thaw is one of the most impactful changes occurring as the Arctic warms, an improved understanding of how stream temperature, hydrology, and bottom‐up food web processes influence fish populations can aid forecasting of future conditions across the Arctic.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    