Abstract Controllable and long‐term release remains a great challenge in current drug delivery systems. Benefiting from their efficient drug loading and painless administration, microneedles (MNs) have emerged as a promising platform for transdermal drug delivery, while they often fail to achieve long‐term tissue adhesion and controllable extended drug release. Here, 3D printing of an innovative MN patch is presented with succulent‐inspired responsive microstructures and light‐controllable long‐term release capability. The MN exhibits a reversible shrink‐swell volume change behavior in response to surrounding humidity, which enables sufficient mechanical strength for skin penetration under the shrinkage conditions and efficient long‐term adhesion when swollen in skin tissues. Moreover, the MN patch introduces a controllable long‐term drug release system, achieved through the integration of thiolated heparin (Hep‐SH) for sustained growth factor release and graphene oxide (GO) nanosheets for controlled drug release via near infrared (NIR) laser irradiation. The MN patches with growth factor loading have good biocompatibility and can promote the proliferation, migration, and proangiogenesis of endothelial cells is further demonstrated. Thus, it is believed that such flexible MN patches can be promising candidates for controllable long‐term transdermal drug delivery as well as other related tissue engineering applications.
more »
« less
This content will become publicly available on February 9, 2026
Engineering Eutectogel Microneedle Patch as Effective Transdermal Delivery System of Hydrophobic Drugs
Abstract Conventional drug delivery methods often face challenges in terms of patient adherence and drug administration. Microneedles (MNs) patches have emerged as a promising alternative, offering a minimally invasive transdermal route for medications. However, their drug‐loading capacity remains limited, particularly for hydrophobic active pharmaceutical ingredients (APIs). Herein, microneedles are designed based on eutectic solvent gels (eutectogels) as transdermal carriers for hydrophobic APIs. A natural deep eutectic solvent (NADES) is combined to enhance the solubility of the hydrophobic APIs within the GelMA/PEGDA matrix for mechanical strength and sustained release from the resulting eutectogels microneedles (EU‐MNs). Using docetaxel, 5‐fluorouracil, and curcumin as hydrophobic APIs models, the superior drug‐loading capacity of the EU‐MNs is demonstrated. In vitro experiments revealed that the EU‐MNs provided a sustained release of distinct hydrophobic APIs over 4 days. Additionally, by properly adjusting the concentration and type of APIs, these microneedle patches do not exhibit cytotoxic effects on fibroblasts cell line (NIH/3T3), underscoring their potential for safe and effective transdermal drug delivery. These findings highlight the potential of EU‐MNs as versatile, eco‐friendly transdermal vehicles for large amounts of hydrophobic APIs, leading to more effective treatments for these drugs.
more »
« less
- PAR ID:
- 10571460
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Therapeutics
- Volume:
- 8
- Issue:
- 5
- ISSN:
- 2366-3987
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Drug delivery through the skin offers many advantages such as avoidance of hepatic first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only a limited number of potent drugs with ideal physicochemical properties can passively diffuse and intercellularly permeate through skin barriers and achieve therapeutic concentration by this route. Significant efforts have been made toward the development of approaches to enhance transdermal permeation of the drugs. Among them, microneedles represent one of the microscale physical enhancement methods that greatly expand the spectrum of drugs for transdermal and intradermal delivery. Microneedles typically measure 0.1–1 mm in length. In this review, microneedle materials, fabrication routes, characterization techniques, and applications for transdermal delivery are discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal drug delivery have been discussed extensively. However, there remain challenges with sustained delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses different modes of characterization and the gaps in manufacturing technologies associated with microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery, disease diagnostic, and cosmetics applications.more » « less
-
Abstract Microneedle (MN) technology offers a powerful approach for transdermal delivery enabling painless injection and facilitating self‐administration without the need for professional assistance. However, the weak mechanical strength of MNs can lead to inefficient drug delivery and serious skin irritation if the MNs fracture during administration and leave fragments under the skin. Thus, the MNs need to be mechanically robust to avoid fracture during penetration through the skin while maintaining efficient drug delivery. Herein, the polymer‐based MNs with layer‐by‐layer (LbL) films of silica (SiO2) nanoparticles (NPs) and a polycation (poly(diallyldimethylammonium chloride) (PDADMAC)) followed by hydrothermal calcination are reinforced. The mechanical strength of the MNs is significantly improved after LbL assembly and shows lower threshold pressure to penetrate skins. Moreover, their drug loading and releasing properties are significantly enhanced due to an increase in the surface area and interfacial interaction. These SiO2nanoparticle‐containing LbL thin films have great potential for the surface modification of 3D microstructured devices such as MNs, as evidenced by their enhanced mechanical strength and drug coating efficiency that result in a promising MN drug delivery model.more » « less
-
Microneedles (MNs) are micrometer-sized arrays that can penetrate the skin in a minimally invasive manner; these devices offer tremendous potential for the transdermal delivery of therapeutic molecules. Although there are many conventional techniques for manufacturing MNs, most of them are complicated and can only fabricate MNs with specific geometries, which restricts the ability to adjust the performance of the MNs. Herein, we present the fabrication of gelatin methacryloyl (GelMA) MN arrays using the vat photopolymerization 3D printing technique. This technique allows for the fabrication of high-resolution and smooth surface MNs with desired geometries. The existence of methacryloyl groups bonded to the GelMA was verified by 1 H NMR and FTIR analysis. To examine the effects of varying needle heights (1000, 750, and 500 µm) and exposure times (30, 50, and 70 s) on GelMA MNs, the height, tip radius, and angle of the needles were measured; their morphological and mechanical properties were also characterized. It was observed that as the exposure time increased, the height of the MNs increased; moreover, sharper tips were obtained and tip angles decreased. In addition, GelMA MNs exhibited good mechanical performance with no breakage up to 0.3 mm displacement. These results indicate that 3D printed GelMA MNs have great potential for transdermal delivery of various therapeutics.more » « less
-
Abstract Transdermal delivery is an attractive delivery method that increases bioavailability, is suitable for a wide variety of therapeutics, and offers stable delivery outcomes. However, many therapeutics are unable to readily cross the stratum corneum. Microneedles mechanically disrupt the cutaneous barrier to deliver small molecules, proteins, and vaccines. To date, microneedles have not been used in conjunction with coacervate, a liquid–liquid phase separation that protects unstable proteins. A three‐layer microneedle for the controlled release of three different molecules is designed. Through micromolding, microneedles are efficiently generated, which benefits product scalability. The microneedles have good mechanical integrity and effectively penetrate porcine skin ex vivo. The three layers, in the microneedles, release the cargo in a three‐phase manner. The released protein maintains its structure well. Moreover, layer thickness can be controlled by varying fabrication parameters. The microneedles can incorporate both small molecule drugs and protein therapeutics, thus promising uses in multi‐drug therapies through a single treatment.more » « less
An official website of the United States government
