Many soft robotic components require highly stretchable, electrically conductive materials for proper operation. Often these conductive materials are used as sensors or as heaters for thermally responsive materials. However, there is a scarcity of stretchable materials that can withstand the high strains typically experienced by soft robots, while maintaining the electrical properties necessary for Joule heating ( e.g. , uniform conductivity). In this work, we present a silicone composite containing both liquid and solid inclusions that can maintain a uniform conductivity while experiencing 200% linear strains. This composite can be cast in thin sheets enabling it to be wrapped around thermally responsive soft materials that increase their volume or stretchability when heated. We show how this material opens up possibilities for electrically controllable shape changing soft robotic actuators, as well as all-silicone actuation systems powered only by electrical stimulus. Additionally, we show that this stretchable composite can be used as an electrode material in other applications, including a strain sensor with a linear response up to 200% strain and near-zero signal noise. 
                        more » 
                        « less   
                    
                            
                            Anisotropic Electrical Transport in Mechanically Responsive Silver‐Coated Microparticle‐Gel Composites for Flowable Semiconducting Materials
                        
                    
    
            Abstract Soft materials with reversible electrical and mechanical properties are critical for the development of advanced bioelectronics that can distinguish between different rates of applied strain and eliminate performance degradation over many cycles. However, the current paradigm in mechano‐electronic devices involves measuring changes in electrical current based on the accumulation of strain within a conductive material that alters the geometry through which electrons flow. Attempts have been made to incorporate soft materials like liquid metals and concentrated solutions of conjugated polymers and salts to overcome materials degradation but are limited in their ability to detect changes in the rate of the applied strain. Herein, the anisotropic electrical performance of a soft semiconducting composite prepared with silver‐coated microspheres dispersed within a swollen copolymer gel is demonstrated. This composite exhibits an electrical response proportional to the magnitude of the applied shear force to enable a rate‐of‐strain dependent conductivity. Furthermore, a 100‐fold increase in the conductivity of the composite is observed when the electric field is oriented parallel to the flow direction. This improvement in the electrical response can be attributed to the enhanced alignment of microspheres in viscoelastic media and can be leveraged in the development of mechanically responsive electronic devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2047365
- PAR ID:
- 10571483
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 11
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Robust Three‐Component Elastomer–Particle–Fiber Composites with Tunable Properties for Soft RoboticsMaterials with tunable properties, especially dynamically tunable stiffness, have been of great interest for the field of soft robotics. Herein, a novel design concept of robust three‐component elastomer–particle–fiber composite system with tunable mechanical stiffness and electrical conductivity is introduced. These smart materials are capable of changing their mechanical stiffness rapidly and reversibly when powered with electrical current. One implementation of the composite system demonstrated here is composed of a polydimethylsiloxane (PDMS) matrix, Field's metal (FM) particles, and nickel‐coated carbon fibers (NCCF). It is demonstrated that the mechanical stiffness and the electrical conductivity of the composite are highly tunable and dependent on the volume fraction of the three components and the temperature, and can be reasonably estimated using effective medium theory. Due to its superior electrical conductivity, Joule heating can be used as the activation mechanism to realize ≈20× mechanical stiffness changes in seconds. The performance of the composites is thermally and mechanically robust. The shape memory effect of these composites is also demonstrated. The combination of tunable mechanical and electrical properties makes these composites promising candidates for sensing and actuation applications for soft robotics.more » « less
- 
            Abstract The electrical resistance of metal-polymer conductive inks increases as they undergo cyclic loading, posing a major challenge to their reliability as interconnect materials for flexible electronic devices. To characterize an ink’s fatigue performance, extensive electro-mechanical testing is usually performed. Phenomenological models that can accurately predict the resistance increase with cyclic loading can save time and be useful in flexible conductor design against fatigue failure. One such model was recently developed for only one composite ink type. The model is based on experiments monitoring resistance under monotonic stretch data and multiple experiments measuring the rate of increase of the resistance under different strain amplitudes and mean strains. The current work examines whether such resistance rate model could be generalized to apply for more types of composite inks. Two composite inks with different binder material, metal flake sizes and shapes, and substrate material were experimentally tested under monotonic and cyclic loading. It was found that the two new inks are also more sensitive to strain amplitude than mean strain. The resistance rate model accurately predicts early/catastrophic failure (<1000 cycles) in all inks and conservatively estimates high fatigue life for low strain amplitudes. A protocol detailing the procedures for applying the resistance model to new inks is outlined.more » « less
- 
            Abstract Conductive adhesives are required for the integration of dissimilar material components to create soft electronic and robotic systems. Here, a heterogeneous liquid metal‐based conductive adhesive is developed that reversibly attaches to diverse surfaces with high stretchability (>100% strain), low modulus (<100 kPa), and strain‐invariant electrical conductivity. This SofT integrated composite with tacK through liquid metal (STICK‐LM) adhesive consists of a heterogeneous graded film with a liquid metal‐rich side that is embossed at prescribed locations for electrical conductivity and an electrically insulating adhesive side for integration. Adhesion behavior is tuned for adhesion energies > 70 Jm−2(≈ 25x enhancement over unmodified composites) and described with a viscoelastic analysis, providing design guidelines for controllable yet reversible adhesion in electrically conductive systems. The architecture of STICK‐LM adhesives provides anisotropic and heterogeneous electrical conductivity and enables direct integration into soft functional systems. This is demonstrated with deformable fuses for robotic joints, repositionable electronics that rapidly attach on curvilinear surfaces, and stretchable adhesive conductors with nearly constant electrical resistance. This study provides a methodology for electrically conductive, reversible adhesives for electrical and mechanical integration of multicomponent systems in emerging technologies.more » « less
- 
            Unique among traditional fillers, the metallically conductive liquid metal galinstan has emerged as an inherently deformable alternative for polymer composites. Galinstan exhibits high electrical conductivity with liquid-like flow, which sets it apart from the solid metals and ceramics typically used to impart electrical behavior to polymers. Upon exposure to atmospheric oxygen, galinstan forms a solid oxide shell that adds mechanical complexity when blended with polymers to create liquid metal polymer composites (LMPCs). This study investigates the mechanical behavior of LMPCs under tension, compression, and torsion as a function of LM droplet size and loading. Experimental analysis and computational modeling reveal distinct behaviors in LMPCs depending on the applied force and droplet characteristics that do not follow the classic composite models like Eshelby theory or more recent, updated versions thereof. Despite the large modulus difference between the LM and oxide shell, focusing exclusively on individual droplet mechanics overlooks the importance of surface energy dynamics within the system. By incorporating interfacial energy into a novel model, the origins of the LMPC mechanical response under deformation were illustrated. Our findings contribute to a broader understanding of composite materials with implications for soft robotics, where material response to various deformations is crucial for functionality.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
