skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 5, 2026

Title: CELEBRATING EARLY INNOVATION IN MODULAR BRIDGE DESIGN: SYSTÈME EIFFEL
Bridge engineering is dominated by bespoke design, where new solutions are sought for each site. Despite potential cost and time savings, modular technologies are rarely pursued. To serve as inspiration for innovation in modular technologies, this paper presents a historical case study of the Système Eiffel – a modular, steel bridge system based on repeated triangular modules or elements used throughout the world. While Gustave Eiffel was widely known for his great iron bridge designs in Europe, his contributions to modular and rapidly erectable bridges are less known. This paper presents his system, including 1) the reasoning behind the design as described in documents by Eiffel, 2) a description of the structural system of one bridge type, including detailed plans and the erection strategy (i.e. launching), and 3) a catalog of the other bridge types that included minor variations. While this paper is historical in nature, it highlights an innovative, modular approach to bridge design that was appropriate at a particular moment in history and aims to spark innovation in bridge engineering today.  more » « less
Award ID(s):
2044340
PAR ID:
10571543
Author(s) / Creator(s):
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Technology and Innovation
ISSN:
1949-8241
Page Range / eLocation ID:
1 to 8
Subject(s) / Keyword(s):
Modular Portable Rapid Erection Launching
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Block, Philippe; Boller, Giulia; DeWolf, Catherine; Pauli, Jacqueline; Kaufmann, Walter (Ed.)
    This paper presents the development and numerical investigation of a novel form for resilient lattice bridges inspired by the Système Eiffel. While Gustave Eiffel is known for his major works of structural art (e.g., Maria Pia Bridge), he was also a pioneer in modular and rapidly erectable bridges that were used worldwide. His Système Eiffel consists of triangular modules, with each module being made up of angle sections. These are joined to one another in an alternating fashion, with adjacent modules rotated 180 degrees. The same module could achieve a variety of spans (6-21 m), and deeper versions were used for longer spans (up to 30.8 m). Inspired by Eiffel, but factoring in today’s economic and labor market, this research has developed a novel approach to modular lattice bridges. Specifically, this research harnesses Eiffel’s approach of rotating adjacent modules, but instead focuses on the connector as the module that joins standard sections. Importantly, the lattice-type layout provides the structure with system redundancy, meaning that the fracture of one member does not cause collapse. This paper presents the numerical investigation of these modular lattice bridges through finite element analyses, considering behavior under dead and live load, global stability, and performance when subjected to member loss. 
    more » « less
  2. This paper presents a numerical investigation of the behavior of steel bridges composed of modular joints during erection by incremental launching. The modular joint is a nodal connector made up of flat and cold bent steel plates that are joined to standard wide-flange members to form a truss-type bridge. Members and modular joints have flanges and webs that are connected independently by bolted splices, resulting in moment-resisting connections. This capability of the nodal connectors to transmit flexure enables a truss-type system to be incrementally launched and provides enhanced resiliency through system redundancy (i.e., the structure can tolerate the loss of a diagonal member). This paper specifically investigates logistics related to this kit-of-parts approach, focusing on transportation to site, “shaking out” of the steel components for erection, and erecting components while minimizing the need for high-capacity cranes. A high-fidelity, three-dimensional Finite Element (FE) model using shell elements that incorporates staged construction is used to understand the behavior of a 119-m (390-ft) two-lane vehicular bridge during incremental launching and in service. The focus is on evaluating the global behavior of the system and local behavior of the modular joints and the members. Results demonstrate the erection advantages of this novel modular approach. The detailed FE modeling approach is compared with a design-level model using frame elements, culminating in guidelines for design and analysis. 
    more » « less
  3. Assessment results show that passing rates in introductory courses and retention rates of first year students in the College of Engineering and Computer Science at The University of X, a predominantly Hispanic Serving Institution (HSI), significantly dropped with the onset of COVID-19. These results and trends highlight the academic preparation of incoming students, particularly the new cohort of underrepresented Hispanic students from underserved and challenged communities in the region, who may not have the necessary skills (e.g., adaptability, persistence, and performance) for the rigor of engineering education. To address this challenge, an onboarding “boostcamp” was created for incoming and transfer students to bridge the transition from secondary education to higher education. The boostcamp primes students to overcome academic deficiencies, develop a critical skills portfolio, learn problem-solving techniques, build a sustainable community of mentoring support with faculty and students, and gain a template to sustain academic and professional success during their undergraduate education. The paper presents the boostcamp's design process steps, including curricular analysis, identification of areas for improvement, skills inventory, and blueprinting, as well as its initial implementation in the mechanical engineering program. The boostcamp was organized over a week and featured hands-on engineering activities, faculty and student talks, and engineering lab tours. It was based on a design thinking approach and structured around Challenge-based Instruction, innovation, design, and mentoring. Daily activities focused on promoting critical thinking, assertiveness in the face of adversity, informed decision-making, and task prioritization. Results indicate that the boostcamp increased student confidence and established a valuable network system among participants. Future work will focus on expanding the boostcamp to include students from other engineering and computer science departments and developing a template for other institutions with similar challenges. 
    more » « less
  4. null (Ed.)
    Formal computational approaches in the realm of engineering and architecture, such as parametric modelling and optimization, are increasingly powerful, allowing for systematic and rigorous design processes. However, these methods often bring a steep learning curve, require previous expertise, or are unintuitive and unnatural to human design. On the other hand, analog design methods such as hand sketching are commonly used by architects and engineers alike, and constitute quick, easy, and almost primal modes of generating and transferring design concepts, which in turn facilitates the sharing of ideas and feedback. In the advent of increasing computational power and developments in data analysis, deep learning, and other emerging technologies, there is a potential to bridge the gap between these seemingly divergent processes to develop new hybrid approaches to design. Such methods can provide designers with new opportunities to harness the systematic and data-driven power of computation and performance analysis while maintaining a more creative and intuitive design interface. This paper presents a new method for interpreting human designs in sketch format and predicting their structural performance using recent advances in deep learning. The paper also demonstrates how this new technique can be used in design workflows including performance-based guidance and interpolations between concepts. 
    more » « less
  5. Pedagogical innovation efforts in engineering education and other STEM fields highlight some of the inherent challenges and opportunities in the process of strengthening undergraduate education. While interactive pedagogical approaches involving peer teamwork and a mix of in-person and online resources have strengthened the quality of teaching/learning, few studies provide a close-up examination of how faculty members navigate the implementation of new learning systems developed in other institutional settings. In this paper we examine factors contributing to the lack of sustained adoption of an engineering learning system called Freeform in a new academic context. We found that while students lauded the learning system’s potential for deep learning practices, the lead instructor encountered several challenges in its implementation which precluded him from adopting the system in the long term. While the lead instructor recognized the pedagogical value of Freeform in helping students engage deeply with engineering concepts, he found its implementation to differ too greatly from his traditional teaching trajectory in addition to increasing his preparation workload and having other logistical barriers. Ultimately, Freeform was not compatible with the specific institutional culture of the engineering department where the study took place. We offer some potential solutions to ameliorate issues of compatibility when attempting to diffuse and implement pedagogical systems in different institutional contexts. 
    more » « less