skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 7, 2026

Title: State selective preparation and nondestructive detection of trapped O2+
The ability to prepare molecular ions in selected quantum states enables studies in areas such as chemistry, metrology, spectroscopy, quantum information, and precision measurements. Here, we demonstrate (2 + 1) resonance-enhanced multiphoton ionization (REMPI) of oxygen, both in a molecular beam and in an ion trap. The two-photon transition in the REMPI spectrum is rotationally resolved, allowing ionization from a selected rovibrational state of O2. Fits to this spectrum determine spectroscopic parameters of the O2d1Πg state and resolve a discrepancy in the literature regarding its band origin. The trapped molecular ions are cooled by co-trapped atomic ions. Fluorescence mass spectrometry nondestructively demonstrates the presence of the photoionized O2+. We discuss strategies for maximizing the fraction of ions produced in the ground rovibrational state. For (2 + 1) REMPI through the d1Πg state, we show that the Q(1) transition is preferred for neutral O2 at rotational temperatures below 50 K, while the O(3) transition is more suitable at higher temperatures. The combination of state-selective loading and nondestructive detection of trapped molecular ions has applications in optical clocks, tests of fundamental physics, and control of chemical reactions.  more » « less
Award ID(s):
2207623
PAR ID:
10571640
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
162
Issue:
5
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The vibrational predissociation (VP) dynamics of the phenol–water (PhOH–H 2 O) dimer were studied by detecting H 2 O fragments and using velocity map imaging (VMI) to infer the internal energy distributions of PhOH cofragments, pair-correlated with selected rotational levels of the H 2 O fragments. Following infrared (IR) laser excitation of the hydrogen-bonded OH stretch fundamental of PhOH (Pathway 1) or the asymmetric OH stretch localized on H 2 O (Pathway 2), dissociation to H 2 O + PhOH was observed. H 2 O fragments were monitored state-selectively by using 2+1 Resonance-Enhanced Multiphoton Ionization (REMPI) combined with time-of-flight mass spectrometry (TOF-MS). VMI of H 2 O in selected rotational levels was used to derive center-of-mass (c.m.) translational energy ( E T ) distributions. The pair-correlated internal energy distributions of the PhOH cofragments derived via Pathway 1 were well described by a statistical prior distribution. On the other hand, the corresponding distributions obtained via Pathway 2 show a propensity to populate higher-energy rovibrational levels of PhOH than expected from a statistical distribution and agree better with an energy-gap model. The REMPI spectra of the H 2 O fragments from both pathways could be fit by Boltzmann plots truncated at the maximum allowed energy, with a higher temperature for Pathway 2 than that for Pathway 1. We conclude that the VP dynamics depends on the OH stretch level initially excited. 
    more » « less
  2. In this work, a detailed calibration study is performed to establish non-intrusive one-dimensional (1D) rovibrational temperature measurements in unseeded air, based on air resonance enhanced multiphoton ionization thermometry (ART). ART is generated by REMPI (resonance enhanced multi-photon ionization) of molecular oxygen and subsequent avalanche ionization of molecular nitrogen in a single laser pulse. ART signal, the fluorescence from the first negative band of molecular nitrogen, is directly proportional to the 2-photon transition of molecular oxygen C3Π (v = 2) ← X3Σ (v’=0), which is used to determine temperature. Experimentally, hyperfine structures of the O2rotational branches with high temperature sensitivity are selectively excited through a frequency-doubled dye laser. Electron-avalanche ionization of N2results in the fluorescence emissions from the first negative bands of N2+near 390, 425, and 430nm, which are captured as a 1D line by a gated intensified camera. Post processing of the N2+fluorescence yields a 1D thermometry line that is representative of the air temperature. It is demonstrated that the technique provides ART fluorescence of ∼5cm in length in the unseeded air, presenting an attractive thermometry solution for high-speed wind tunnels and other ground test facilities. 
    more » « less
  3. Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species. 
    more » « less
  4. We theoretically examine the rotational and vibrational dynamics of O2+ molecular ions exposed to intense, short laser pulses for conditions realized in contemporary pump-probe experiments.We solve the time-dependent Schrödinger equation within the Born-Oppenheimer approximation for an initial distribution of randomly aligned molecular ions. For fixed peak intensities, our numerical results show that total, angle-integrated O2+ → O(3P) + O+(4S0 ) dissociation yields do not monotonically increase with increasing infrared-probe pulse duration. We find this pulse-duration-dependent stabilization to be consistent with the transient trapping of nuclear probability density in a light-induced (bond-hardening) potential-energy surface and robust against rotational excitation. We analyze this stabilization effect and its underlying bond-hardening mechanism (i) in the time domain, by following the evolution of partial nuclear probability densities associated with the dipole-coupled O2+(a 4Pi u ) and O2+( f 4 Pi g) cationic states, and (ii) in the frequency domain, by examining rovibrational quantum-beat spectra for the evolution of the partial nuclear probability densities associated with these states. Our analysis reveals the characteristic timescale for the bond-hardening mechanism in O2+ and explains the onset of bond stabilization for sufficiently long pulse durations. 
    more » « less
  5. In this work, we report the results of a combined ab initio and experimental investigation of highly excited Σg+1 and Πg1 states of the cesium dimer in a previously unobserved energy region of the molecule. The structure of these high-lying electronic states was predicted via calculations in the framework of the pseudopotential method and observed via the optical–optical double resonance technique. Understanding the rovibronic structure of the cesium dimer at this high energy regime has significance for the formation of ultracold Cs2 ground state molecules and their detection using resonantly enhanced multiphoton ionization (REMPI) techniques. Using the ab initio results and the selection rules for dipole allowed transitions, the experimentally observed rovibrational levels were identified as belonging to the 11Σg+1 and 61Πg electronic states. The Dunham–RKR method was utilized to generate experimental potential energy curves for the two electronic states. 
    more » « less