skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Policy effect evaluation under counterfactual neighbourhood intervention in the presence of spillover
Abstract Policy interventions can spill over to units of a population that is not directly exposed to the policy but are geographically close to the units receiving the intervention. In recent work, investigations of spillover effects on neighbouring regions have focused on estimating the average treatment effect of a particular policy in an observed setting. Our research question broadens this scope by asking what policy consequences would the treated units have experienced under counterfactual exposure settings. When we only observe treated unit(s) surrounded by controls—as is common when a policy intervention is implemented in a single city or state—this effect inquires about the policy effects under a counterfactual neighbourhood policy status that we do not, in actuality, observe. In this work, we extend difference-in-differences approaches to spillover settings and develop identification conditions required to evaluate policy effects in counterfactual treatment scenarios. These causal quantities are policy-relevant for designing effective policies for populations subject to various neighbourhood statuses. We develop several estimators that have desirable properties. We provide an illustrative data application to the Philadelphia beverage tax study.  more » « less
Award ID(s):
2149716
PAR ID:
10571719
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series A: Statistics in Society
ISSN:
0964-1998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many causal processes have spatial and temporal dimensions. Yet the classic causal inference framework is not directly applicable when the treatment and outcome variables are generated by spatio-temporal point processes. We extend the potential outcomes framework to these settings by formulating the treatment point process as a stochastic intervention. Our causal estimands include the expected number of outcome events in a specified area under a particular stochastic treatment assignment strategy. Our methodology allows for arbitrary patterns of spatial spillover and temporal carryover effects. Using martingale theory, we show that the proposed estimator is consistent and asymptotically normal as the number of time periods increases. We propose a sensitivity analysis for the possible existence of unmeasured confounders, and extend it to the Hájek estimator. Simulation studies are conducted to examine the estimators' finite sample performance. Finally, we illustrate the proposed methods by estimating the effects of American airstrikes on insurgent violence in Iraq from February 2007 to July 2008. Our analysis suggests that increasing the average number of daily airstrikes for up to 1 month may result in more insurgent attacks. We also find some evidence that airstrikes can displace attacks from Baghdad to new locations up to 400 km away. 
    more » « less
  2. Summary In many observational studies, the treatment assignment mechanism is not individualistic, as it allows the probability of treatment of a unit to depend on quantities beyond the unit’s covariates. In such settings, unit treatments may be entangled in complex ways. In this article, we consider a particular instance of this problem where the treatments are entangled by a social network among units. For instance, when studying the effects of peer interaction on a social media platform, the treatment on a unit depends on the change of the interactions network over time. A similar situation is encountered in many economic studies, such as those examining the effects of bilateral trade partnerships on countries’ economic growth. The challenge in these settings is that individual treatments depend on a global network that may change in a way that is endogenous and cannot be manipulated experimentally. In this paper, we show that classical propensity score methods that ignore entanglement may lead to large bias and wrong inference of causal effects. We then propose a solution that involves calculating propensity scores by marginalizing over the network change. Under an appropriate ignorability assumption, this leads to unbiased estimates of the treatment effect of interest. We also develop a randomization-based inference procedure that takes entanglement into account. Under general conditions on network change, this procedure can deliver valid inference without explicitly modelling the network. We establish theoretical results for the proposed methods and illustrate their behaviour via simulation studies based on real-world network data. We also revisit a large-scale observational dataset on contagion of online user behaviour, showing that ignoring entanglement may inflate estimates of peer influence. 
    more » « less
  3. Abstract Spillover effects are considered important in evaluating the impacts of food, energy and water (FEW) conservation behaviors for limiting global greenhouse gas emissions and climate change. Failure to account for all possible spillovers, or indirect and unintended results of an intervention, not only obscures valuable information pertaining to the dynamic interactions across domains but also results in biased estimates. In this study, we first systematically reviewed articles that investigate the idea that the performance of one pro-environmental behavior influences the conduct of subsequent behaviors(s) from the FEW domains. From our review of 48 studies in the last decade, we note that a big part of the discussion on spillover concerns the nature and direction of causal relationships between individual FEW conservation behaviors. We identify a critical gap in the literature regarding the distinction between spillover effects caused by the interventions as distinct from those caused by the primary behaviors. Next, we conducted a quantitative meta-analysis of the reviewed empirical studies to find a modest but overall positive spillover effect. Finally, we reviewed the theoretical and methodological plurality in the FEW spillover literature using a systemic thinking lens to summarize what is already known and identify future challenges and research opportunities with significant policy implications. 
    more » « less
  4. Recent work on legislative politics has documented complex patterns of interaction and collaboration through the lens of network analysis. In a largely separate vein of research, the field experiment—with many applications in state legislatures—has emerged as an important approach in establishing causal identification in the study of legislative politics. The stable unit treatment value assumption (SUTVA)—the assumption that a unit’s outcome is unaffected by other units’ treatment statuses—is required in conventional approaches to causal inference with experiments. When SUTVA is violated via networked social interaction, treatment effects spread to control units through the network structure. We review recently developed methods that can be used to account for interference in the analysis of data from field experiments on state legislatures. The methods we review require the researcher to specify a spillover model, according to which legislators influence each other, and specify the network through which spillover occurs. We discuss these and other specification steps in detail. We find mixed evidence for spillover effects in data from two previously published field experiments. Our replication analyses illustrate how researchers can use recently developed methods to test for interference effects, and support the case for considering interference effects in experiments on state legislatures. 
    more » « less
  5. Precise estimation of treatment effects is crucial for accurately evaluating the intervention. While deep learning models have exhibited promising performance in learning counterfactual representations for treatment effect estimation (TEE), a major limitation in most of these models is that they often overlook the diversity of treatment effects across potential subgroups that have varying treatment effects and characteristics, treating the entire population as a homogeneous group. This limitation restricts the ability to precisely estimate treatment effects and provide targeted treatment recommendations. In this paper, we propose a novel treatment effect estimation model, named SubgroupTE, which incorporates subgroup identification in TEE. SubgroupTE identifies heterogeneous subgroups with different responses and more precisely estimates treatment effects by considering subgroup-specific treatment effects in the estimation process. In addition, we introduce an expectation–maximization (EM)-based training process that iteratively optimizes estimation and subgrouping networks to improve both estimation and subgroup identification. Comprehensive experiments on the synthetic and semi-synthetic datasets demonstrate the outstanding performance of SubgroupTE compared to the existing works for treatment effect estimation and subgrouping models. Additionally, a real-world study demonstrates the capabilities of SubgroupTE in enhancing targeted treatment recommendations for patients with opioid use disorder (OUD) by incorporating subgroup identification with treatment effect estimation. 
    more » « less