The functioning of mycorrhizal symbioses is tied to soil nutrient status, suggesting that nutrient availability should influence the reproduction of mycorrhizal fungi. To quantify the effects of nitrogen (N) and phosphorus (P) availability on ectomycorrhizal fungal fruiting, we collected > 4,000 epigeous sporocarps representing 19 families during the course of a season in a full factorial NxP addition experiment in six replicate forest stands. Nutrient effects on fruiting shifted as the season progressed, with early fruiting species responding more to P and late-fruiting species responding more to N. The composition of species fruiting in young successional forests differed more with nutrient addition than in mature forests. Sporocarp abundance and species richness were suppressed by N addition. This work shows that N and P availability affect ectomycorrhizal fungal fruiting, with these effects taking place within a context defined by stand age and the progression of fruiting across the season. The data table in this data package contains the sprorocarp observation counts and biomass. Corresponding DNA sequences can be found in GenBank at: https://www.ncbi.nlm.nih.gov/nuccore/?term=MT345178%3AMT345282%5Baccn%5D Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-hbr.344.2 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
                        more » 
                        « less   
                    This content will become publicly available on February 1, 2026
                            
                            Nitrogen and phosphorus additions affect fruiting of ectomycorrhizal fungi in a temperate hardwood forest
                        
                    
    
            The functioning of mycorrhizal symbioses is tied to soil nutrient status, suggesting that nutrient availability should influence the reproduction of mycorrhizal fungi. To quantify the effects of nitrogen (N) and phosphorus (P) availability on ectomycorrhizal fungal fruiting, we collected >4000 epigeous sporocarps representing 19 families during the course of a season in a full factorial NxP addition experiment in six replicate forest stands. Nutrient effects on fruiting shifted as the season progressed, with early fruiting species responding more to P and late-fruiting species responding more to N. The composition of species fruiting in young successional forests differed more with nutrient addition than in mature forests. Sporocarp abundance and species richness were suppressed by N addition. This work shows that N and P availability affect ectomycorrhizal fungal fruiting, with these effects taking place within a context defined by stand age and the progression of fruiting across the season. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10571901
- Publisher / Repository:
- Elsevier on behalf of The British Mycological Society
- Date Published:
- Journal Name:
- Fungal Ecology
- Volume:
- 73
- Issue:
- C
- ISSN:
- 1754-5048
- Page Range / eLocation ID:
- 101388
- Subject(s) / Keyword(s):
- Sporocarp Ectomycorrhizal fungi Community ecology Northern hardwood forest Nitrogen Phosphorus Nutrient limitation MELNHE
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Druzhinina, Irina S. (Ed.)ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.more » « less
- 
            Plant-fungal symbioses play critical roles in vegetation dynamics and nutrient cycling, modulating the impacts of global changes on ecosystem functioning. Here, we used forest inventory data consisting of more than 3 million trees to develop a spatially resolved “mycorrhizal tree map” of the contiguous United States. We show that abundances of the two dominant mycorrhizal tree groups—arbuscular mycorrhizal (AM) and ectomycorrhizal trees—are associated primarily with climate. Further, we show that anthropogenic influences, primarily nitrogen (N) deposition and fire suppression, in concert with climate change, have increased AM tree dominance during the past three decades in the eastern United States. Given that most AM-dominated forests in this region are underlain by soils with high N availability, our results suggest that the increasing abundance of AM trees has the potential to induce nutrient acceleration, with critical consequences for forest productivity, ecosystem carbon and nutrient retention, and feedbacks to climate change.more » « less
- 
            Abstract Decades of theory and empirical studies have demonstrated links between biodiversity and ecosystem functioning, yet the putative processes that underlie these patterns remain elusive. This is especially true for forest ecosystems, where the functional traits of plant species are challenging to quantify. We analyzed 74,563 forest inventory plots that span 35 ecoregions in the contiguous USA and found that in ~77% of the ecoregions mixed mycorrhizal plots were more productive than plots where either arbuscular or ectomycorrhizal fungal-associated tree species were dominant. Moreover, the positive effects of mixing mycorrhizal strategies on forest productivity were more pronounced at low than high tree species richness. We conclude that at low richness different mycorrhizal strategies may allow tree species to partition nutrient uptake and thus can increase community productivity, whereas at high richness other dimensions of functional diversity can enhance resource partitioning and community productivity. Our findings highlight the importance of mixed mycorrhizal strategies, in addition to that of taxonomic diversity in general, for maintaining ecosystem functioning in forests.more » « less
- 
            Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cycling rates. This generates a second hypothesis, that arbuscular and ectomycorrhizal plant species traits complement and reinforce these fungal strategies, resulting in nutrient acquisitive vs. conservative plant trait profiles. Here we analyzed 17,764 species level trait observations from 2,940 woody plant species to show that mycorrhizal plants differ systematically in nitrogen and phosphorus economic traits. Differences were clearest in temperate latitudes, where ectomycorrhizal plant species are more nitrogen use- and phosphorus use-conservative than arbuscular mycorrhizal species. This difference is reflected in both aboveground and belowground plant traits and is robust to controlling for evolutionary history, nitrogen fixation ability, deciduousness, latitude, and species climate niche. Furthermore, mycorrhizal effects are large and frequently similar to or greater in magnitude than the influence of plant nitrogen fixation ability or deciduous vs. evergreen leaf habit. Ectomycorrhizal plants are also more nitrogen conservative than arbuscular plants in boreal and tropical ecosystems, although differences in phosphorus use are less apparent outside temperate latitudes. Our findings bolster current theories of ecosystems rooted in mycorrhizal ecology and support the hypothesis that plant mycorrhizal association is linked to the evolution of plant nutrient economic strategies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
