skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 20, 2025

Title: A framework for counterfactual analysis, strategy evaluation, and control of epidemics using reproduction number estimates
During pandemics, countries, regions, and communities develop various epidemic models to evaluate spread and guide mitigation policies. However, model uncertainties caused by complex transmission behaviors, contact-tracing networks, time-varying parameters, human factors, and limited data present significant challenges to model-based approaches. To address these issues, we propose a novel framework that centers around reproduction number estimates to perform counterfactual analysis, strategy evaluation, and feedback control of epidemics. The framework 1) introduces a mechanism to quantify the impact of the testing-for-isolation intervention strategy on the basic reproduction number. Building on this mechanism, the framework 2) proposes a method to reverse engineer the effective reproduction number under different strengths of the intervention strategy. In addition, based on the method that quantifies the impact of the testing-for-isolation strategy on the basic reproduction number, the framework 3) proposes a closed-loop control algorithm that uses the effective reproduction number both as feedback to indicate the severity of the spread and as the control goal to guide adjustments in the intensity of the intervention. We illustrate the framework, along with its three core methods, by addressing three key questions and validating its effectiveness using data collected during the COVID-19 pandemic at the University of Illinois Urbana-Champaign (UIUC) and Purdue University: 1) How severe would an outbreak have been without the implemented intervention strategies? 2) What impact would varying the intervention strength have had on an outbreak? 3) How can we adjust the intervention intensity based on the current state of an outbreak?  more » « less
Award ID(s):
2238388
PAR ID:
10571920
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Britton, Tom
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
20
Issue:
11
ISSN:
1553-7358
Page Range / eLocation ID:
e1012569
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the wake of community coronavirus disease 2019 (COVID-19) transmission in the United States, there is a growing public health concern regarding the adequacy of resources to treat infected cases. Hospital beds, intensive care units (ICUs), and ventilators are vital for the treatment of patients with severe illness. To project the timing of the outbreak peak and the number of ICU beds required at peak, we simulated a COVID-19 outbreak parameterized with the US population demographics. In scenario analyses, we varied the delay from symptom onset to self-isolation, the proportion of symptomatic individuals practicing self-isolation, and the basic reproduction number R 0 . Without self-isolation, when R 0 = 2.5, treatment of critically ill individuals at the outbreak peak would require 3.8 times more ICU beds than exist in the United States. Self-isolation by 20% of cases 24 h after symptom onset would delay and flatten the outbreak trajectory, reducing the number of ICU beds needed at the peak by 48.4% (interquartile range 46.4–50.3%), although still exceeding existing capacity. When R 0 = 2, twice as many ICU beds would be required at the peak of outbreak in the absence of self-isolation. In this scenario, the proportional impact of self-isolation within 24 h on reducing the peak number of ICU beds is substantially higher at 73.5% (interquartile range 71.4–75.3%). Our estimates underscore the inadequacy of critical care capacity to handle the burgeoning outbreak. Policies that encourage self-isolation, such as paid sick leave, may delay the epidemic peak, giving a window of time that could facilitate emergency mobilization to expand hospital capacity. 
    more » « less
  2. Flegg, Jennifer A. (Ed.)
    Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which rely on widely administered frequent and rapid diagnostics to identify and isolate infected individuals, could be a potentially less disruptive management strategy, particularly where vaccine access is limited. In this paper, we assess the extent to which mass testing and isolation strategies can reduce reliance on socially costly non-pharmaceutical interventions, such as distancing and shutdowns. We develop a multi-compartmental model of SARS-CoV-2 transmission incorporating both preventative non-pharmaceutical interventions (NPIs) and testing and isolation to evaluate their combined effect on public health outcomes. Our model is designed to be a policy-guiding tool that captures important realities of the testing system, including constraints on test administration and non-random testing allocation. We show how strategic changes in the characteristics of the testing system, including test administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs without compromising public health outcomes in the future. The lowest NPI levels are possible only when many tests are administered and test delays are short, given limited immunity in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing program to identify and isolate unreported, asymptomatic infections. Changes in NPIs, including the intensity of lockdowns and stay at home orders, should be coordinated with increases in testing to ensure epidemic control; otherwise small additional lifting of these NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly, our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for the flexible design of combined interventions based on social context, and inform future cost-benefit analyses to identify efficient pandemic management strategies. 
    more » « less
  3. null (Ed.)
    The spread of pandemics such as COVID-19 is strongly linked to human activities. The objective of this article is to specify and examine early indicators of disease spread risk in cities during the initial stages of outbreak based on patterns of human activities obtained from digital trace data. In this study, the Venables distance ( D v ) and the activity density ( D a ) are used to quantify and evaluate human activities for 193 United States counties, whose cumulative number of confirmed cases was greater than 100 as of March 31, 2020. Venables distance provides a measure of the agglomeration of the level of human activities based on the average distance of human activities across a city or a county (less distance could lead to a greater contact risk). Activity density provides a measure of level of overall activity level in a county or a city (more activity could lead to a greater risk). Accordingly, Pearson correlation analysis is used to examine the relationship between the two human activity indicators and the basic reproduction number in the following weeks. The results show statistically significant correlations between the indicators of human activities and the basic reproduction number in all counties, as well as a significant leader-follower relationship (time lag) between them. The results also show one to two weeks’ lag between the change in activity indicators and the decrease in the basic reproduction number. This result implies that the human activity indicators provide effective early indicators for the spread risk of the pandemic during the early stages of the outbreak. Hence, the results could be used by the authorities to proactively assess the risk of disease spread by monitoring the daily Venables distance and activity density in a proactive manner. 
    more » « less
  4. null (Ed.)
    Due to the rise of COVID-19 cases, many mathematical models have been developed to study the disease dynamics of the virus. However, despite its role in the spread of COVID-19, many SEIR models neglect to account for human behavior. In this project, we develop a novel mathematical modeling framework for studying the impact of mixing patterns and social behavior on the spread of COVID-19. Specifically, we consider two groups, one exhibiting normal behavior who do not reduce their contacts and another exhibiting altered behavior who reduce their contacts by practicing non-pharmaceutical interventions such as social distancing and self-isolation. The dynamics of these two groups are modeled through a coupled system of ordinary differential equations that incorporate mixing patterns of individuals from these groups, such that contact rates depend on behavioral patterns adopted across the population. Additionally, we derive the basic reproduction number, perform numerical simulations, and create an interactive dashboard. 
    more » « less
  5. Each state in the USA exhibited a unique response to the COVID-19 outbreak, along with variable levels of testing, leading to different actual case burdens in the country. In this study, via per capita testing dependent ascertainment rates, along with case and death data, we fit a minimal epidemic model for each state. We estimate infection-level responsive lockdown/self-quarantine entry and exit rates (representing government and behavioural reaction), along with the true number of cases as of 31 May 2020. Ultimately, we provide error-corrected estimates for commonly used metrics such as infection fatality ratio and overall case ascertainment for all 55 states and territories considered, along with the USA in aggregate, in order to correlate outbreak severity with first wave intervention attributes and suggest potential management strategies for future outbreaks. We observe a theoretically predicted inverse proportionality relation between outbreak size and lockdown rate, with scale dependent on the underlying reproduction number and simulations suggesting a critical population quarantine ‘half-life’ of 30 days independent of other model parameters. 
    more » « less