Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography–defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared “permanent” because they did not dissolve in dilute BALF matrix, they could be solubilized by a previously unidentified reducing agent (P2062), but not N -acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy.
more »
« less
Experimental and statistical methods for microrheological characterization of heterogeneity in human respiratory mucus mimics of health and disease progression
Human respiratory mucus (HRM) is extremely soft, compelling passive microrheology for linear viscoelastic characterization. We focus this study on the use of passive microrheology to characterize HRM heterogeneity, a phenomenon in normal HRM that becomes extreme during cystic fibrosis (CF) disease. Specifically, a fraction of the mucin polymers comprising HRM phase-separate into insoluble structures, called flakes, dispersed in mucin-depleted solution. We first reconstitute HRM samples to the MUC5B:MUC5AC mucin ratios consistent with normal and CF clinical samples, which we show recapitulate progressive flake formation and heterogeneity. We then employ passive particle tracking with 200 nm and 1 μm diameter beads in each reconstituted sample. To robustly analyze the tracking data, we introduce statistical denoising methods for low signal-to-noise tracking data within flakes, tested and verified using model-generated synthetic data. These statistical methods provide a fractional Brownian motion classifier of all successfully denoised, tracked beads in flakes and the dilute solution. From the ensemble of classifier data, per bead diameter and mucus sample, we then employ clustering methods to learn and infer multiple levels of heterogeneity: (i) tracked bead data within vs. outside flakes and (ii) within-flake data buried within or distinguishable from the experimental noise floor. Simulated data consistent with experimental data (within and outside flakes) are used to explore form(s) of the generalized Stokes–Einstein relation (GSER) that recover the dynamic moduli of homogeneous and heterogeneous truth sets of purely flakelike, dilute solution, and mixture samples. The appropriate form of GSER is applied to experimental data to show (i) flakes are heterogeneous with gel and sol domains; (ii) dilute solutions are heterogeneous with only sol domains; and (iii) flake and dilute solution properties vary with probe diameter.
more »
« less
- Award ID(s):
- 1931516
- PAR ID:
- 10572002
- Publisher / Repository:
- AIP Publishing LLC
- Date Published:
- Journal Name:
- Journal of Rheology
- Volume:
- 68
- Issue:
- 6
- ISSN:
- 0148-6055
- Page Range / eLocation ID:
- 995 to 1011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mucus, composed significantly of glycosylated mucins, is a soft and rheologically complex material that lines respiratory, reproductive, and gastrointestinal tracts in mammals. Mucus may present as a gel, as a highly viscous fluid, or as a viscoelastic fluid. Mucus acts as a barrier to the transport of harmful microbes and inhaled atmospheric pollutants to underlying cellular tissue. Studies on mucin gels have provided critical insights into the chemistry of the gels, their swelling kinetics, and the diffusion and permeability of molecular constituents such as water. The transport and dispersion of micron and sub-micron particles in mucin gels and solutions, however, differs from the motion of small molecules since the much larger tracers may interact with microstructure of the mucin network. Here, using brightfield and fluorescence microscopy, high-speed particle tracking, and passive microrheology, we study the thermally driven stochastic movement of 0.5–5.0 μm tracer particles in 10% mucin solutions at neutral pH, and in 10% mucin mixed with industrially relevant dust; specifically, unmodified limestone rock dust, modified limestone, and crystalline silica. Particle trajectories are used to calculate mean square displacements and the displacement probability distributions; these are then used to assess tracer diffusion and transport. Complex moduli are concomitantly extracted using established microrheology techniques. We find that under the conditions analyzed, the reconstituted mucin behaves as a weak viscoelastic fluid rather than as a viscoelastic gel. For small- to moderately sized tracers with a diameter of lessthan 2 μm, we find that effective diffusion coefficients follow the classical Stokes–Einstein relationship. Tracer diffusivity in dust-laden mucin is surprisingly larger than in bare mucin. Probability distributions of mean squared displacements suggest that heterogeneity, transient trapping, and electrostatic interactions impact dispersion and overall transport, especially for larger tracers. Our results motivate further exploration of physiochemical and rheological mechanisms mediating particle transport in mucin solutions and gels.more » « less
-
Abstract The solution rheology of a fully synthetic, monodisperse mucin that mimics the glycosylated domains of natural mucins, poly(β‐Gal‐Thr)22, is studied to systematically explore relationships between polymer structure, solution conditions, and rheological properties. Using standard cone‐plate rheometry, shear thinning is observed over a range of concentrations, with an apparent yield stress—typical for gels—evident at the highest concentrations. This is surprising given the dilute, weakly interacting nature of the solutions and the lack of observable structure in cryogenic electron microscopy and particle tracking microrheology. However, interfacial rheometry demonstrates that the gel‐like behavior is attributable to a thin structured layer at the air–water interface, without any bulk gelation. This is attributed to an interfacial layer formed by inter‐mucin H‐bonds that yields when sheared. A computational model using kinetic Monte Carlo (kMC) simulations qualitatively reproduces the yield stress response of such a network through an intermolecular bonding potential. An analytical model of stochastic bond formation and breaking, validated by the kMC simulations, demonstrates that having multiple bonding sites per mucin with a force‐dependent debonding rate aligns with experiments, consistent with intermolecular interactions for other mucin proteins. This suggests that in mucin solutions, gelation may begin at the air–water interface, and emphasizes the need for multitechnique validation when exploring structural cues of mucus gelation through rheometry.more » « less
-
Abstract We develop the first molecular dynamics model of airway mucus based on the detailed physical properties and chemical structure of the predominant gel‐forming mucin MUC5B. Our airway mucus model leverages the LAMMPS open‐source code [https://lammps.sandia.gov], based on the statistical physics of polymers, from single molecules to networks. On top of the LAMMPS platform, the chemical structure of MUC5B is used to superimpose proximity‐based, noncovalent, transient interactions within and between the specific domains of MUC5B polymers. We explore feasible ranges of hydrophobic and electrostatic interaction strengths between MUC5B domains with 9 nm spatial and 1 ns temporal resolution. Our goal here is to propose and test a mechanistic hypothesis for a striking clinical observation with respect to airway mucus: a 10‐fold increase in nonswellable, dense structures called flakes during progression of cystic fibrosis disease. Among the myriad possible effects that might promote self‐organization of MUC5B networks into flake structures, we hypothesize and confirm that the clinically confirmed increase in mucin concentration, from 1.5 to 5 mg/ml, alone is sufficient to drive the structure changes observed with scanning electron microscopy images from experimental samples. We postprocess the LAMMPS simulated data sets at 1.5 and 5 mg/ml, both to image the structure transition and compare with scanning electron micrographs and to show that the 3.33‐fold increase in concentration induces closer proximity of interacting electrostatic and hydrophobic domains, thereby amplifying the proximity‐based strength of the interactions.more » « less
-
Simulating native mucus with model systems such as gels made from reconstituted mucin or commercially available polymers presents experimental advantages including greater sample availability and reduced inter- and intradonor heterogeneity. Understanding whether these gels reproduce the complex physical and biochemical properties of native mucus at multiple length scales is critical to building relevant experimental models, but few systematic comparisons have been reported. Here, we compared bulk mechanical properties, microstructure, and biochemical responses of mucus from different niches, reconstituted mucin gels (with similar pH and polymer concentrations as native tissues), and commonly used commercially available polymers. To evaluate gel properties across these length scales, we used small-amplitude oscillatory shear, single-particle tracking, and microaffinity chromatography with small analytes. With the exception of human saliva, the mechanical response of mucin gels was qualitatively similar to that of native mucus. The transport behavior of charged peptides through native mucus gels was qualitatively reproduced in gels composed of corresponding isolated mucins. Compared to native mucus, we observed substantial differences in the physicochemical properties of gels reconstituted from commercially available mucins and the substitute carboxymethylcellulose, which is currently used in artificial tear and saliva treatments. Our study highlights the importance of selecting a mucus model system guided by the length scale relevant to the scientific investigation or disease application.more » « less
An official website of the United States government
