Abstract We report the exfoliation process optimization, physicochemical characterizations, and comparative aggregation behavior of the inorganic 2D nanomaterial hexagonal Boron Nitride (h-BN) produced from two repetitive sonication-centrifugation processes with varying centrifugation speeds and recycle frequency: Continuous and Segmented protocols. Enhancing exfoliation efficiency and understanding aqueous stability are essential for sustainable design and environmental applications. Results showed that the Segmented protocol outperformed the Continuous protocol by having a six-fold increase in the exfoliated h-BN nanosheet yield by reusing the unexfoliated bulk h-BN and decreasing centrifugation speeds. Centrifugation speeds of 1880 and 950 rpm produced nanosheets of similar sizes due to the slight difference in the centrifugal force generated in both protocols. Moreover, nanosheets from both protocols had enhanced polarity due to the higher amounts of −OH bonds attached to the exposed edges of the nanosheets. However, the hydroxylation percentage of the nanosheets decreased with centrifugation speed. Both protocols produced h-BN nanosheets that were stable in DI water dispersion. The comparatively lower initial aggregation rate at all centrifugation speeds supported the fact that the Segmented protocol nanosheets were more stable than the Continuous ones. The Segmented protocol h-BN nanosheets showed better overall stability at lower speeds than the other centrifugation speeds. Segmented protocol nanosheets from 3750 rpm had the lowest aggregation rate than the other centrifugation speed. These findings assist in finding the balance between exfoliation protocol, environmental application, and implication of h-BN nanosheets.
more »
« less
Opening the Hysteresis Loop in Ferromagnetic Fe 3 GeTe 2 Nanosheets Through Functionalization with TCNQ Molecules
Abstract Ferromagnetic metal Fe3GeTe2(FGT), whose structure exhibits weak van‐der‐Waals interactions between 5‐atom thick layers, was subjected to liquid‐phase exfoliation (LPE) in N‐methyl pyrrolidone (NMP) to yield a suspension of nanosheets that were separated into several fractions by successive centrifugation at different speeds. Electron microscopy confirmed successful exfoliation of bulk FGT to nanosheets as thin as 6 nm. The ferromagnetic ordering temperature for the nanosheets gradually decreased with the increase in the centrifugation speed used to isolate the 2D material. These nanosheets were resuspended in NMP and treated with an organic acceptor, 7,7,8,8‐tetracyano‐quinodimethane (TCNQ), which led to precipitation of FGT‐TCNQ composite. The formation of the composite material is accompanied by charge transfer from the FGT nanosheets to TCNQ molecules, generating TCNQ⋅−radical anions, as revealed by experimental vibrational spectra and supported by first principles calculations. Remarkably, a substantial increase in magnetic anisotropy was observed, as manifested by the increase in the coercive field from nearly zero in bulk FGT to 1.0 kOe in the exfoliated nanosheets and then to 5.4 kOe in the FGT‐TCNQ composite. The dramatic increase in coercivity of the composite suggests that functionalization with redox‐active molecules provides an appealing pathway to enhancing magnetic properties of 2D materials.
more »
« less
- PAR ID:
- 10572121
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 5
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- e202412425
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report liquid-phase exfoliation (LPE) of bulk layered-structure semiconductor, MnIn 2 Se 4 , to nanoscale thick sheets by ultrasonication followed by sequential centrifugation at 2000, 5000, and 7500 rpm. The nanosheets exfoliated by LPE in isopropyl alcohol show an average thickness of 50, 40, and 14 nm, respectively. The smallest of these values corresponds approximately to ten 7-atom thick [Se–In–Se–Mn–Se–In–Se] layers that compose the bulk structure of MnIn 2 Se 4 . Both the bulk material and the exfoliated samples show photoluminescence, but the weak shoulder observed from the indirect band gap emission is obviously suppressed in the nanosheet samples as compared to the bulk sample. Similar to the bulk, the nanosheets isolated at 2000 and 5000 rpm exhibit spin-glass behavior with a freezing temperature of ∼3 K. In contrast, the nanosheets isolated at 7500 rpm do not exhibit any anomalies in their low-temperature magnetic behavior. These results demonstrate the possibility to extend the LPE technique to van-der-Waals materials with several-atom-thick layers.more » « less
-
Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications.more » « less
-
Abstract Among several well-known transition metal-based compounds, cleavable van der Waals (vdW) Fe3-xGeTe2(FGT) magnet is a strong candidate for use in two-dimensional (2D) magnetic devices due to its strong perpendicular magnetic anisotropy, sizeable Curie temperature (TC~154 K), and versatile magnetic character that is retained in the low-dimensional limit. While the TCremains far too low for practical applications, there has been a successful push toward improving it via external driving forces such as pressure, irradiation, and doping. Here we present experimental evidence of a room temperature (RT) ferromagnetic phase induced by the electrochemical intercalation of common tetrabutylammonium cations (TBA+) into quasi-2D FGT. We obtained Curie temperatures as high as 350 K with chemical and physical stability of the intercalated compound. The temperature-dependent Raman measurements, in combination with vdW-corrected ab initio calculations, suggest that charge transfer (electron doping) upon intercalation could lead to the observation of RT ferromagnetism. This work demonstrates that molecular intercalation is a viable route in realizing high-temperature vdW magnets in an inexpensive and reliable manner, and has the potential to be extended to bilayer and few-layer vdW magnets.more » « less
-
Abstract Solution‐processed graphene is a promising material for numerous high‐volume applications including structural composites, batteries, sensors, and printed electronics. However, the polydisperse nature of graphene dispersions following liquid‐phase exfoliation poses major manufacturing challenges, as incompletely exfoliated graphite flakes must be removed to achieve optimal properties and downstream performance. Incumbent separation schemes rely on centrifugation, which is highly energy‐intensive and limits scalable manufacturing. Here, cross‐flow filtration (CFF) is introduced as a centrifuge‐free processing method that improves the throughput of graphene separation by two orders of magnitude. By tuning membrane pore sizes between microfiltration and ultrafiltration length scales, CFF can also be used for efficient recovery of solvents and stabilizing polymers. In this manner, life cycle assessment and techno‐economic analysis reveal that CFF reduces greenhouse gas emissions, fossil energy usage, water consumption, and specific production costs of graphene manufacturing by 57%, 56%, 63%, and 72%, respectively. To confirm that CFF produces electronic‐grade graphene, CFF‐processed graphene nanosheets are formulated into printable inks, leading to state‐of‐the‐art thin‐film conductivities exceeding 104S m−1. This CFF methodology can likely be generalized to other van der Waals layered solids, thus enabling sustainable manufacturing of the diverse set of applications currently being pursued for 2D materials.more » « less
An official website of the United States government

