SUMMARY The recent developments in array-based surface-wave tomography have made it possible to directly measure apparent phase velocities through wave front tracking. While directionally dependent measurements have been used to infer intrinsic $$2\psi $$ azimuthal anisotropy (with a 180° periodicity), a few studies have also demonstrated strong but spurious $$1\psi $$ azimuthal anisotropy (360° periodicity) near major structure boundaries particularly for long period surface waves. In such observations, Rayleigh waves propagating in the direction perpendicular to the boundary from the slow to the fast side persistently show a higher apparent velocity compared to waves propagating in the opposite direction. In this study, we conduct numerical and theoretical investigations to explore the effect of scattering on the apparent Rayleigh-wave phase velocity measurement. Using 2-D spectral-element numerical wavefield simulations, we first reproduce the observation that waves propagating in opposite directions show different apparent phase velocities when passing through a major velocity contrast. Based on mode coupling theory and the locked mode approximation, we then investigate the effect of the scattered fundamental-mode Rayleigh wave and body waves interfering with the incident Rayleigh wave separately. We show that scattered fundamental-mode Rayleigh waves, while dominating the scattered wavefield, mostly cause short wavelength apparent phase velocity variations that could only be studied if the station spacing is less than about one tenth of the surface wave wavelength. Scattered body waves, on the other hand, cause longer wavelength velocity variations that correspond to the existing real data observations. Because of the sensitivity of the $$1\psi $$ apparent anisotropy to velocity contrasts, incorporating such measurements in surface wave tomography could improve the resolution and sharpen the structural boundaries of the inverted model.
more »
« less
Frequency dependence of Rayleigh wave amplification by variation in Earth structure investigated using the constant energy flux approximation
SUMMARY The sensitivity of Rayleigh wave amplitude to Earth structure has applications to seismic tomography, both in cases where amplitude information is used to supplement phase velocity data to improve images of elastic parameters, and to correct amplitudes for local Earth structure in attenuation tomography. We review the theoretical basis of the ray theoretical approximation, in which the wave amplitudes are controlled by a combination of geometrical spreading and local changes in energy density due to Earth structure. We focus mainly on the latter effect, which we term the constant energy flux approximation. We investigate the ray theoretical basis for this approximation, test it against a full waveform simulation that verifies its accuracy and show how it can be used to compute the sensitivity of amplitude to elastic moduli and density. We investigate how perturbing these parameters in a set of simple Earth models affects Rayleigh wave amplitudes, and demonstrate that a slow velocity heterogeneity can cause either increased or reduced amplitudes, depending upon the depth of the heterogeneity and the observation frequency. Consequently, amplitude sensitivity can be either positive or negative, and its magnitude can vary significantly with frequency. Although an added complication, the very different behaviour of phase velocity and amplitudes to changes in Earth structure implies that the two types of data are complementary and suggest the effectiveness of using both in Rayleigh wave tomography.
more »
« less
- PAR ID:
- 10572339
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 241
- Issue:
- 1
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 354-377
- Size(s):
- p. 354-377
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface waves are excited by mechanical vibration of a cylindrical container having an air/water interface pinned at the rim, and the dynamics of pattern formation is analysed from both an experimental and theoretical perspective. The wave conforms to the geometry of the container and its spatial structure is described by the mode number pair ( $$n,\ell$$ ) that is identified by long exposure time white light imaging. A laser light system is used to detect the surface wave frequency, which exhibits either a (i) harmonic response for low driving amplitude edge waves or (ii) sub-harmonic response for driving amplitude above the Faraday wave threshold. The first 50 resonant modes are discovered. Control of the meniscus geometry is used to great effect. Specifically, when flat, edge waves are suppressed and only Faraday waves are observed. For a concave meniscus, edge waves are observed and, at higher amplitudes, Faraday waves appear as well, leading to complicated mode mixing. Theoretical predictions for the natural frequency of surface oscillations for an inviscid liquid in a cylindrical container with a pinned contact line are made using the Rayleigh–Ritz procedure and are in excellent agreement with experimental results.more » « less
-
Abstract Distributed acoustic sensing (DAS) provides dense arrays ideal for seismic tomography. However, DAS only records average axial strain change along the cable, which can complicate the interpretation of surface-wave observations. With a rectangular DAS array located in the City of Oxnard, California, we compare phase velocity dispersion at the same location illuminated by differently oriented virtual sources. The dispersion curves are consistent for colinear and noncolinear virtual sources, suggesting that surface-wave observations in most of the cross-correlations are dominated by Rayleigh waves. Our measurements confirm that colinear channel pairs provide higher Rayleigh-wave signal-to-noise ratio (SNR). For cross-correlations of noncolinear channel pairs, the travel time of each connecting ray path can still be obtained despite the lower SNR of Rayleigh wave signals. The inverted Rayleigh-wave dispersion map reveals an ancient river channel consistent with the local geologic map. Our results demonstrate the potential of DAS-based 2D surface-wave tomography without special treatment of directional sensitivity in areas where one type of wave is dominating or can be identified.more » « less
-
Abstract Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure.more » « less
-
Abstract: There is no theoretical underpinning that successfully explains how turbulent mixing is fed by wave breaking associated with nonlinear wave-wave interactions in the background oceanic internal wavefield. We address this conundrum using one-dimensional ray tracing simulations to investigate interactions between high frequency internal waves and inertial oscillations in the extreme scale separated limit known as “Induced Diffusion”. Here, estimates of phase locking are used to define a resonant process (a resonant well) and a non-resonant process that results in stochastic jumps. The small amplitude limit consists of jumps that are small compared to the scale of the resonant well. The ray tracing simulations are used to estimate the first and second moments of a wave packet’s vertical wavenumber as it evolves from an initial condition. These moments are compared with predictions obtained from the diffusive approximation to a self-consistent kinetic equation derived in the ‘Direct Interaction Approximation’. Results indicate that the first and second moments of the two systems evolve in a nearly identical manner when the inertial field has amplitudes an order of magnitude smaller than oceanic values. At realistic (oceanic) amplitudes, though, the second moment estimated from the ray tracing simulations is inhibited. The transition is explained by the stochastic jumps obtaining the characteristic size of the resonant well. We interpret this transition as an adiabatic ‘saturation’ process which changes the nominal background wavefield from supporting no mixing to the point where that background wavefield defines the normalization for oceanic mixing models.more » « less
An official website of the United States government
