Abstract Despite the importance of insect pollination to produce marketable fruits, insect pollination management is limited by insufficient knowledge about key crop pollinator species. This lack of knowledge is due in part to (1) the extensive labour involved in collecting direct observations of pollen transport, (2) the variability of insect assemblages over space and time and (3) the possibility that pollinators may need access to wild plants as well as crop floral resources.We address these problems using strawberry in the United Kingdom as a case study. First, we compare two proxies for estimating pollinator importance: flower visits and pollen transport. Pollen‐transport data might provide a closer approximation of pollination service, but visitation data are less time‐consuming to collect. Second, we identify insectparametersthat are associated with high importance as pollinators, estimated using each of the proxies above. Third, we estimated insects' use of wild plants as well as the strawberry crop.Overall, pollinator importances estimated based on easier‐to‐collect visitation data were strongly correlated with importances estimated based on pollen loads. Both frameworks suggest that bees (ApisandBombus) and hoverflies (Eristalis) are likely to be key pollinators of strawberries, although visitation data underestimate the importance of bees.Moving beyond species identities, abundant, relatively specialised insects with long active periods are likely to provide more pollination services.Most insects visiting strawberry plants also carried pollen from wild plants, suggesting that pollinators need diverse floral resources.Identifying essential pollinators or pollinator parameters based on visitation data will reach the same general conclusions as those using pollen transport data, at least in monoculture crop systems. Managers may be able to enhance pollination service by preserving habitats surrounding crop fields to complement pollinators' diets and provide habitats for diverse life stages of wild pollinators.
more »
« less
Patterns and drivers of pollen co‐transport network structure vary across pollinator functional groups
Abstract The patterns and drivers of pollen transport on insect bodies can have important consequences for plant reproductive success and floral evolution; however, they remain little studied. Recently, pollinator bodies have been further described as pollen competitive arenas, where pollen grains can compete for space, with implications for the evolution of pollen dispersal strategies and plant community assembly. However, the identity, strength, and diversity of pollen competitive interactions and how they vary across pollinator functional groups is not known. Evaluating patterns and drivers of the pollen co‐transport landscape and how these vary across different pollinator groups is central to further our understanding of floral evolution and co‐flowering community assembly.Here, we integrate information on the number and identity of pollen grains on individual insect pollen loads with network analyses to uncover novel pollen co‐transport networks and how these vary across pollinator functional groups (bees and bee flies). We further evaluate differences in pollen load size, species composition, diversity and phylogenetic diversity among insect groups and how these relate to body size and gender.Pollen co‐transport networks were diverse and highly modular in bees, with groups of pollen species interacting more often with each other on insect bodies. However, the number, identity and frequency of competitors that pollen grains encounter on insect bodies vary between some pollinator functional groups. Other aspects of pollen loads such as their size, richness and phylogenetical diversity were shaped by bee size or gender, with females carrying larger but less phylogenetically diverse pollen loads than males.Synthesis. Our results show that the number, identity and phylogenetic relatedness of pollen competitors changes as pollen grains travel on the body of different pollinators. As a result, pollinator groups impose vastly different interaction landscapes during pollen transport, with so far unknown consequences for plant reproductive success, floral evolution and community assembly.
more »
« less
- Award ID(s):
- 1931163
- PAR ID:
- 10572430
- Publisher / Repository:
- British Ecological Society
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 112
- Issue:
- 10
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- 2319 to 2332
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In flowering plants that produce concealed rewards, pollinator foraging preferences may select for floral advertisement traits that are correlated with rewards. To date, studies have not focused on the potential for honest signals to vary across populations, which could occur due to differences in pollinator communities or plant mating system.We tested for variation in honest signals across and within populations and mating systems inArabis alpina, a broadly distributed arctic‐alpine perennial herb that is visited by a variable community of insects. In a greenhouse common garden, we tested for correlations between corolla area, floral scent and nectar volume in 29 populations. In 12 field populations, we examined variation in pollen limitation and corolla area.Across and within populations and mating systems, larger flowers generally produced more nectar. Total scent emission was not correlated with nectar production, but two compounds—phenylacetaldehyde and benzyl alcohol—may be honest signals in some populations. Corolla area was correlated with pollen limitation only across populations.Our results suggest that honest signals may be similar across populations but may not result from contemporary direct selection on floral advertisements. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Summary Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator.Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness.We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success.East‐facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East‐facing capitula also sired more offspring than west‐facing capitula and under some conditions produced heavier and better‐filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits.These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.more » « less
-
Abstract Pollen protein content has been demonstrated to be an essential nutritional component for bees and thus important in mediating plant–pollinator interactions. However, little is known on the drivers and consequences of among‐species variation in pollen protein content and how this can impact male and female reproductive success across plant species. Among‐species variation in resources allocated to pollen nutrition could further be constrained by life‐history strategies (e.g. survival‐reproduction trade‐offs) or evolutionary history.Here, we surveyed pollen protein content for 29 species within a diverse co‐flowering community and evaluated the effect of pollen protein on male and female reproductive success. We also tested the role of life history (annuals vs. perennials) and phylogeny in mediating differences in resource allocation to pollen nutrition.We found that pollen protein content influences components of male (bee visitor abundance and pollen dispersal) but not female (conspecific pollen deposition and pollen tube growth) reproductive success, suggesting this trait affects plants only via male function. This sex‐specific effect further suggests the potential for sexual conflicts driven by differential investment on this trait. We found no phylogenetic signal on pollen protein content. However, pollen protein content was higher in annual compared to perennial species suggesting survival versus reproduction trade‐offs also contribute to variation in pollen protein at the community level.Our study underscores the importance of understanding the ecological and evolutionary drivers of pollen protein content across plant species. Our results further suggest the existence of sexual conflicts and ecological trade‐offs mediated by differential investment in pollen nutritional quality, with important implications for community assembly and the structure of plant–pollinator interactions. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities.more » « less
An official website of the United States government

