skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2025

Title: Cognitive limits of larval Drosophila : testing for conditioned inhibition, sensory preconditioning, and second-order conditioning
Drosophilalarvae are an established model system for studying the mechanisms of innate and simple forms of learned behavior. They have about 10 times fewer neurons than adult flies, and it was the low total number of their neurons that allowed for an electron microscopic reconstruction of their brain at synaptic resolution. Regarding the mushroom body, a central brain structure for many forms of associative learning in insects, it turned out that more than half of the classes of synaptic connection had previously escaped attention. Understanding the function of these circuit motifs, subsequently confirmed in adult flies, is an important current research topic. In this context, we test larvalDrosophilafor their cognitive abilities in three tasks that are characteristically more complex than those previously studied. Our data provide evidence for (i) conditioned inhibition, as has previously been reported for adult flies and honeybees. Unlike what is described for adult flies and honeybees, however, our data do not provide evidence for (ii) sensory preconditioning or (iii) second-order conditioning inDrosophilalarvae. We discuss the methodological features of our experiments as well as four specific aspects of the organization of the larval brain that may explain why these two forms of learning are observed in adult flies and honeybees, but not in larvalDrosophila.  more » « less
Award ID(s):
2113179
PAR ID:
10572452
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Cold Spring Harbor Press
Date Published:
Journal Name:
Learning & Memory
Volume:
31
Issue:
5
ISSN:
1549-5485
Page Range / eLocation ID:
a053726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Larvae of the fruit flyDrosophila melanogasterare a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement. SIGNIFICANCE STATEMENTThe single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larvalDrosophilaas a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits. 
    more » « less
  2. Stomatopod crustaceans have among the most complex eyes in the animal kingdom, with up to twelve different color detection channels. The capabilities of these unique eyes include photoreception of ultraviolet (UV) wavelengths (<400 nm). UV vision has been well characterized in adult stomatopods but has not been previously demonstrated in the comparatively simpler larval eye. Larval stomatopod eyes are developmentally distinct from their adult counterpart and have been described as lacking the visual pigment diversity and morphological specializations found in adult eyes. However, recent studies have provided evidence that larval stomatopod eyes are more complex than previously thought and warrant closer investigation. Using electroretinogram recordings in live animals we found physiological evidence of blue and UV sensitive photoreceptors in larvae of the Caribbean stomatopod species Neogonodactylus oerstedii. Transcriptomes of individual larvae were used to identify the expression of three distinct UV opsins transcripts, which may indicate the presence of multiple UV spectral channels. This is the first paper to document UV vision in any larval stomatopod, expanding our understanding of the importance of UV sensitivity in plankton. Similar to adults, larval stomatopod eyes are more complex than expected and contain previously uncharacterized molecular diversity and physiological functions. 
    more » « less
  3. INTRODUCTION A brainwide, synaptic-resolution connectivity map—a connectome—is essential for understanding how the brain generates behavior. However because of technological constraints imaging entire brains with electron microscopy (EM) and reconstructing circuits from such datasets has been challenging. To date, complete connectomes have been mapped for only three organisms, each with several hundred brain neurons: the nematode C. elegans , the larva of the sea squirt Ciona intestinalis , and of the marine annelid Platynereis dumerilii . Synapse-resolution circuit diagrams of larger brains, such as insects, fish, and mammals, have been approached by considering select subregions in isolation. However, neural computations span spatially dispersed but interconnected brain regions, and understanding any one computation requires the complete brain connectome with all its inputs and outputs. RATIONALE We therefore generated a connectome of an entire brain of a small insect, the larva of the fruit fly, Drosophila melanogaster. This animal displays a rich behavioral repertoire, including learning, value computation, and action selection, and shares homologous brain structures with adult Drosophila and larger insects. Powerful genetic tools are available for selective manipulation or recording of individual neuron types. In this tractable model system, hypotheses about the functional roles of specific neurons and circuit motifs revealed by the connectome can therefore be readily tested. RESULTS The complete synaptic-resolution connectome of the Drosophila larval brain comprises 3016 neurons and 548,000 synapses. We performed a detailed analysis of the brain circuit architecture, including connection and neuron types, network hubs, and circuit motifs. Most of the brain’s in-out hubs (73%) were postsynaptic to the learning center or presynaptic to the dopaminergic neurons that drive learning. We used graph spectral embedding to hierarchically cluster neurons based on synaptic connectivity into 93 neuron types, which were internally consistent based on other features, such as morphology and function. We developed an algorithm to track brainwide signal propagation across polysynaptic pathways and analyzed feedforward (from sensory to output) and feedback pathways, multisensory integration, and cross-hemisphere interactions. We found extensive multisensory integration throughout the brain and multiple interconnected pathways of varying depths from sensory neurons to output neurons forming a distributed processing network. The brain had a highly recurrent architecture, with 41% of neurons receiving long-range recurrent input. However, recurrence was not evenly distributed and was especially high in areas implicated in learning and action selection. Dopaminergic neurons that drive learning are amongst the most recurrent neurons in the brain. Many contralateral neurons, which projected across brain hemispheres, were in-out hubs and synapsed onto each other, facilitating extensive interhemispheric communication. We also analyzed interactions between the brain and nerve cord. We found that descending neurons targeted a small fraction of premotor elements that could play important roles in switching between locomotor states. A subset of descending neurons targeted low-order post-sensory interneurons likely modulating sensory processing. CONCLUSION The complete brain connectome of the Drosophila larva will be a lasting reference study, providing a basis for a multitude of theoretical and experimental studies of brain function. The approach and computational tools generated in this study will facilitate the analysis of future connectomes. Although the details of brain organization differ across the animal kingdom, many circuit architectures are conserved. As more brain connectomes of other organisms are mapped in the future, comparisons between them will reveal both common and therefore potentially optimal circuit architectures, as well as the idiosyncratic ones that underlie behavioral differences between organisms. Some of the architectural features observed in the Drosophila larval brain, including multilayer shortcuts and prominent nested recurrent loops, are found in state-of-the-art artificial neural networks, where they can compensate for a lack of network depth and support arbitrary, task-dependent computations. Such features could therefore increase the brain’s computational capacity, overcoming physiological constraints on the number of neurons. Future analysis of similarities and differences between brains and artificial neural networks may help in understanding brain computational principles and perhaps inspire new machine learning architectures. The connectome of the Drosophila larval brain. The morphologies of all brain neurons, reconstructed from a synapse-resolution EM volume, and the synaptic connectivity matrix of an entire brain. This connectivity information was used to hierarchically cluster all brains into 93 cell types, which were internally consistent based on morphology and known function. 
    more » « less
  4. For decades, theDrosophilalarval neuromuscular junction (NMJ) has been a go-to model for synaptic development. This simple, accessible system is composed of a repeating pattern of 33 distinct neurons that stereotypically innervate 30 muscles. Fundamental mechanisms that underlie diverse aspects of axon pathfinding, synaptic form, and function have been uncovered at the NMJ, and new pathways continue to be uncovered. These discoveries are fueled by the ease of dissections and an extensive array of techniques. Chief among these techniques are various microscopy approaches, including super-resolution and electron microscopy. Functionally, theDrosophilaNMJ is glutamatergic, similar to the vertebrate central synapses, making it a great model to study normal development and neurological diseases. Here we provide a brief overview of the larval neuromuscular system, highlighting the connectivity patterns, development, and some of the mechanisms underlying these processes. 
    more » « less
  5. Parasitoid wasps are exceptionally diverse and use specialized adaptations capable of manipulating the physiology and behaviour of host organisms. In more than two centuries since the first records of Drosophila-parasitizing wasps, nearly 200 described and provisional parasitoid species of drosophilids have been identified. These include endoparasitoids and ectoparasitoids, as well as species attacking larval and pupal hosts. Despite a deep history of research attention and remarkable biodiversity, a wasp species that attacks and develops inside the adult stage of a fly host has not been described previously. Here we report the discovery of a wasp species that infects the adult stage of fruit flies in the genus Drosophila, including one of the most deeply studied model organisms in biology, Drosophila melanogaster. Notably, this wasp can be easily collected from backyard fly baits and has a broad geographic distribution throughout the eastern USA. We document its life history and unique host interactions, including egg-laying into and larval emergence from adult flies, and provide protocols to raise wasps from wild-caught host flies. Our results emphasize the need for ongoing research investment in insect biodiversity and systematics. As parasitoid research continues to uncover unusual biology and supports fundamental mechanistic insights into immunity, metabolism, ecology, evolution and behaviour, we anticipate that this wasp’s association with the laboratory model organism, D. melanogaster, will provide new research opportunities across the life sciences. 
    more » « less