skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bifurcation of equilibrium positions for ellipsoidal particles in inertial shear flows between two walls
We conducted a systematic numerical investigation of spherical, prolate and oblate particles in an inertial shear flow between two parallel walls, using smoothed particle hydrodynamics (SPH). It was previously shown that above a critical Reynolds number, spherical particles experience a supercritical pitchfork bifurcation of the equilibrium position in shear flow between two parallel walls, namely that the central equilibrium position becomes unstable, leading to the emergence of two new off-centre stable positions (Foxet al.,J. Fluid Mech., vol. 915, 2021). This phenomenon was unexpected given the symmetry of the system. In addition to confirming this finding, we found, surprisingly, that ellipsoidal particles can also return to the centre position from the off-centre positions when the particle Reynolds number is further increased, while spherical particles become unstable under this increased Reynolds number. By utilizing both SPH and the finite element method for flow visualization, we explained the underlining mechanism of this reverse of bifurcation by altered streamwise vorticity and symmetry breaking of pressure. Furthermore, we expanded our investigation to include asymmetric particles, a novel aspect that had not been previously modelled, and we observed similar trends in particle dynamics for both symmetric and asymmetric ellipsoidal particles. While further validation through laboratory experiments is necessary, our research paves the road for development of new focusing and separation methods for shaped particles.  more » « less
Award ID(s):
1841509 1841473 2210366
PAR ID:
10572519
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
Na
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
984
ISSN:
0022-1120
Subject(s) / Keyword(s):
particle/fluid flow, microfluidics, bifurcation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At low Reynolds numbers, axisymmetric ellipsoidal particles immersed in a shear flow undergo periodic tumbling motions known as Jeffery orbits, with the orbit determined by the initial orientation. Understanding this motion is important for predicting the overall dynamics of a suspension. While slender fibres may follow Jeffery orbits, many such particles in nature are neither straight nor rigid. Recent work exploring the dynamics of curved or elastic fibres have found Jeffery-like behaviour along with chaotic orbits, decaying orbital constants and cross-streamline drift. Most work focuses on particles with reflectional symmetry; we instead consider the behaviour of a composite asymmetric slender body made of two straight rods, suspended in a two-dimensional shear flow, to understand the effects of the shape on the dynamics. We find that for certain geometries the particle does not rotate and undergoes persistent drift across streamlines, the magnitude of which is consistent with other previously identified forms of cross-streamline drift. For this class of particles, such geometry-driven cross-streamline motion may be important in giving rise to dispersion in channel flows, thereby potentially enhancing mixing. 
    more » « less
  2. Inertial migration of spherical particles has been investigated extensively using experiments, theory, and computational modeling. Yet, a systematic investigation of the effect of particle shape on inertial migration is still lacking. Herein, we numerically mapped the migration dynamics of a prolate particle in a straight rectangular microchannel using smoothed particles hydrodynamics (SPH). For the first time, we identified a new logrolling behavior of a prolate ellipsoidal particle in the confined channel. Our findings are especially relevant to the applications where particle shape and alignment are used for sorting and analysis, such as shape-based enrichment of microalgae, bacteria, and chromosomes. 
    more » « less
  3. A ring with a cross-section that has a blunt inner and sharper outer edge can attain an equilibrium orientation in a Newtonian fluid subject to a low Reynolds number simple shear flow. This may be contrasted with the continuous rotation exhibited by most rigid bodies. Such rings align along an orientation when the rotation due to fluid vorticity balances the counter-rotation due to the extensional component of the simple shear flow. While the viscous stress on the particle tries to rotate it, the pressure can generate a counter-vorticity torque that aligns the particle. Using boundary integral computations, we demonstrate ways to effectively control this pressure by altering the geometry of the ring cross-section, thus leading to alignment at moderate particle aspect ratios. Aligning rings that lack fore–aft symmetry can migrate indefinitely along the gradient direction. This differs from the periodic spatial trajectories of fore–aft asymmetric axisymmetric particles that rotate in periodic orbits. The mechanism for migration of aligned rings along the gradient direction is elucidated in this work. The migration speed can be controlled by varying the cross-sectional shape and size of the ring. Our results provide new insights into controlling motion of individual particles and thereby open new pathways towards manipulating macroscopic properties of a suspension. 
    more » « less
  4. Inertial migration of spherical particles has been investigated extensively using experiments, theory, and computational modeling. Yet, a systematic investigation of the effect of particle shape on inertial migration is still lacking. Herein, we numerically mapped the migration dynamics of a prolate particle in a straight rectangular microchannel using smoothed particle hydrodynamics at moderate Reynolds number flows. After validation, we applied our model to 2:1 and 3:1 shape aspect ratio particles at multiple confinement ratios. Their effects on the final focusing position, rotational behavior, and transitional dynamics were studied. In addition to the commonly reported tumbling motion, for the first time, we identified a new logrolling behavior of a prolate ellipsoidal particle in the confined channel. This new behavior occurs when the confinement ratio is above an approximate threshold value of K = 0.72. Our microfluidic experiments using cell aggregates with similar shape aspect ratio and confinement ratio confirmed this new predicted logrolling motion. We also found that the same particle can undergo different rotational modes, including kayaking behavior, depending on its initial cross-sectional position and orientation. Furthermore, we examined the migration speed, angular velocity, and rotation period as well as their dependence on both particle shape aspect ratio and confinement ratio. Our findings are especially relevant to the applications where particle shape and alignment are used for sorting and analysis, such as the use of barcoded particles for biochemical assays through optical reading, or the shape-based enrichment of microalgae, bacteria, and chromosomes. 
    more » « less
  5. In this paper, we report a novel symmetry-breaking phenomenon that occurs in turbulent convective flow in periodic porous media in the intermediate porosity flow regime for values of porosities in between 0.8 and 0.9. Large eddy simulation is used to numerically simulate the momentum and thermal transport inside the porous medium at the microscale level. The phenomenon is observed to occur for periodically repeating porous media consisting of an in-line arrangement of circular cylinder solid obstacles, such as typically found in heat exchangers. The transition from symmetric to asymmetric flow occurs in between the pore scale Reynolds numbers of 37 (laminar) and 100 (turbulent), and asymmetric flow patterns are reported for Reynolds numbers up to 1,000. A Hopf bifurcation resulting in unsteady oscillatory laminar flow marks the origin of a secondary flow instability arising from the interaction of the shear layers around the solid obstacle. In turbulent flow, stochastic phase difference in the vortex wake oscillations caused by the secondary flow instability results in asymmetrical velocity and temperature distributions in the pore space. Consequently, high and low velocity flow channels are formed in the pore space that leads to the asymmetrical velocity and pressure distributions. At the macroscale level, symmetry-breaking results in residual transverse drag force components acting on the solid obstacle surfaces. The vortex wake oscillations caused by the secondary flow instability promote attached flow on the solid obstacle surface, which improves the surface averaged heat flux from the solid obstacle surface. 
    more » « less