skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-time MRI of the moving wrist at 0.55 tesla
Objectives:Magnetic resonance imaging (MRI) using 1.5T or 3.0T systems is routinely employed for assessing wrist pathology; however, due to off-resonance artifacts and high power deposition, these high-field systems have drawbacks for real-time (RT) imaging of the moving wrist. Recently, high-performance 0.55T MRI systems have become available. In this proof-of-concept study, we tested the hypothesis that RT-MRI during continuous, active, and uninterrupted wrist motion is feasible with a high-performance 0.55T system at temporal resolutions below 100 ms and that the resulting images provide visualization of tissues commonly interrogated for assessing dynamic wrist instability. Methods:Participants were scanned during uninterrupted wrist radial-ulnar deviation and clenched fist maneuvers. Resulting images (nominal temporal resolution of 12.7–164.6 ms per image) were assessed for image quality. Feasibility of static MRI to supplement RT-MRI acquisition was also tested. Results:The RT images with temporal resolutions < 100 ms demonstrated low distortion and image artifacts, and higher reader assessment scores. Static MRI scans showed the ability to assess anatomical structures of interest in the wrist. Conclusion:RT-MRI of the wrist at a high temporal resolution, coupled with static MRI, is feasible with a high-performance 0.55T system, and may enable improved assessment of wrist dynamic dysfunction and instability. Advances in knowledge:Real-time MRI of the moving wrist is feasible with high-performance 0.55T and may improve the evaluation of dynamic dysfunction of the wrist.  more » « less
Award ID(s):
1828736
PAR ID:
10572554
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The British Journal of Radiology
Volume:
96
Issue:
1151
ISSN:
0007-1285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PurposeTo demonstrate speech‐production real‐time MRI (RT‐MRI) using a contemporary 0.55T system, and to identify opportunities for improved performance compared with conventional field strengths. MethodsExperiments were performed on healthy adult volunteers using a 0.55T MRI system with high‐performance gradients and a custom 8‐channel upper airway coil. Imaging was performed using spiral‐based balancedSSFPand gradient‐recalled echo (GRE) pulse sequences using a temporal finite‐difference constrained reconstruction. Speech‐production RT‐MRI was performed with three spiral readout durations (8.90, 5.58, and 3.48 ms) to determine trade‐offs with respect to articulator contrast, blurring, banding artifacts, and overall image quality. ResultsBoth spiral GRE and bSSFP captured tongue boundary dynamics during rapid consonant‐vowel syllables. Although bSSFP provided substantially higher SNR in all vocal tract articulators than GRE, it suffered from banding artifacts at TR > 10.9 ms. Spiral bSSFP with the shortest readout duration (3.48 ms, TR = 5.30 ms) had the best image quality, with a 1.54‐times boost in SNR compared with an equivalent GRE sequence. Longer readout durations led to increased SNR efficiency and blurring in both bSSFP and GRE. ConclusionHigh‐performance 0.55T MRI systems can be used for speech‐production RT‐MRI. Spiral bSSFP can be used without suffering from banding artifacts in vocal tract articulators, provide better SNR efficiency, and have better image quality than what is typically achieved at 1.5 T or 3 T. 
    more » « less
  2. Abstract PurposeTo determine the feasibility of simultaneous multi‐slice (SMS) real‐time MRI (RT‐MRI) at 0.55T for the evaluation of cardiac function. MethodsCardiac CINE MRI is routinely used to evaluate left‐ventricular (LV) function. The standard is sequential multi‐slice balanced SSFP (bSSFP) over a stack of short‐axis slices using electrocardiogram (ECG) gating and breath‐holds. SMS has been used in CINE imaging to reduce the number of breath‐holds by a factor of 2–4 at 1.5T, 3T, and recently at 0.55T. This work aims to determine if SMS is similarly effective in the RT‐MRI evaluation of cardiac function. We used an SMS bSSFP pulse sequence with golden‐angle spirals at 0.55T with an SMS factor of three. We cover the LV with three acquisitions for SMS, and nine for single‐band (SB). Imaging was performed on 9 healthy volunteers and 1 patient with myocardial fibrosis and sternal wires. A spatio‐temporal constrained reconstruction is used, with regularization parameters selected by a board‐certified cardiologist. Images were quantitatively analyzed with a normalized contrast and an Edge Sharpness (ES) score. ResultsThere was a statistically significant 2‐fold difference in contrast between SMS and SB and no significant difference in ES score. The contrast for SMS and SB were 13.38/29.05 at mid‐diastole and 10.79/22.26 at end‐systole; the ES scores for SMS and SB were 1.77/1.83 at mid‐diastole and 1.50/1.72 at end‐systole. ConclusionsSMS cardiac RT‐MRI at 0.55T is feasible and provides sufficient blood‐myocardium contrast to evaluate LV function in three slices simultaneously without any gating or periodic motion assumptions. 
    more » « less
  3. PurposeBody composition MRI captures the distribution of fat and lean tissues throughout the body, and provides valuable biomarkers of obesity, metabolic disease, and muscle disorders, as well as risk assessment. Highly reproducible protocols have been developed for 1.5T and 3T MRI. The purpose of this work was to demonstrate the feasibility and test–retest repeatability of MRI body composition profiling on a 0.55T whole‐body system. MethodsHealthy adult volunteers were scanned on a whole‐body 0.55T MRI system using the integrated body RF coil. Experiments were performed to refine parameter settings such as TEs, resolution, flip angle, bandwidth, acceleration, and oversampling factors. The final protocol was evaluated using a test–retest study with subject removal and replacement in 10 adult volunteers (5 M/5F, age 25–60, body mass index 20–30). ResultsCompared to 1.5T and 3T, the optimal flip angle at 0.55T was higher (15°), due to the shorter T1 times, and the optimal echo spacing was larger, due to smaller chemical shift between water and fat. Overall image quality was comparable to conventional field strengths, with no significant issues with fat/water swapping or inadequate SNR. Repeatability coefficient of visceral fat, subcutaneous fat, total thigh muscle volume, muscle fat infiltration, and liver fat were 11.8 cL (2.2%), 46.9 cL (1.9%), 14.6 cL (0.5%), 0.1 pp (2%), and 0.2 pp (5%), respectively (coefficient of variation in parenthesis). ConclusionsWe demonstrate that 0.55T body composition MRI is feasible and present optimized scan parameters. The resulting images provide satisfactory quality for automated post‐processing and produce repeatable results. 
    more » « less
  4. Abstract BackgroundMagnetic resonance imaging (MRI) scans are known to suffer from a variety of acquisition artifacts as well as equipment‐based variations that impact image appearance and segmentation performance. It is still unclear whether a direct relationship exists between magnetic resonance (MR) image quality metrics (IQMs) (e.g., signal‐to‐noise, contrast‐to‐noise) and segmentation accuracy. PurposeDeep learning (DL) approaches have shown significant promise for automated segmentation of brain tumors on MRI but depend on the quality of input training images. We sought to evaluate the relationship between IQMs of input training images and DL‐based brain tumor segmentation accuracy toward developing more generalizable models for multi‐institutional data. MethodsWe trained a 3D DenseNet model on the BraTS 2020 cohorts for segmentation of tumor subregions enhancing tumor (ET), peritumoral edematous, and necrotic and non‐ET on MRI; with performance quantified via a 5‐fold cross‐validated Dice coefficient. MRI scans were evaluated through the open‐source quality control tool MRQy, to yield 13 IQMs per scan. The Pearson correlation coefficient was computed between whole tumor (WT) dice values and IQM measures in the training cohorts to identify quality measures most correlated with segmentation performance. Each selected IQM was used to group MRI scans as “better” quality (BQ) or “worse” quality (WQ), via relative thresholding. Segmentation performance was re‐evaluated for the DenseNet model when (i) training on BQ MRI images with validation on WQ images, as well as (ii) training on WQ images, and validation on BQ images. Trends were further validated on independent test sets derived from the BraTS 2021 training cohorts. ResultsFor this study, multimodal MRI scans from the BraTS 2020 training cohorts were used to train the segmentation model and validated on independent test sets derived from the BraTS 2021 cohort. Among the selected IQMs, models trained on BQ images based on inhomogeneity measurements (coefficient of variance, coefficient of joint variation, coefficient of variation of the foreground patch) and the models trained on WQ images based on noise measurement peak signal‐to‐noise ratio (SNR) yielded significantly improved tumor segmentation accuracy compared to their inverse models. ConclusionsOur results suggest that a significant correlation may exist between specific MR IQMs and DenseNet‐based brain tumor segmentation performance. The selection of MRI scans for model training based on IQMs may yield more accurate and generalizable models in unseen validation. 
    more » « less
  5. PurposeTo determineR2and transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI. MethodsExperiments were performed in 3 healthy adult volunteers on a prototype whole‐body 0.55T MRI, using a custom free‐breathing electrocardiogram‐triggered, single‐slice echo‐shifted multi‐echo spin echo (ES‐MCSE) pulse sequence with respiratory navigation. Transverse relaxation ratesR2and and off‐resonance ∆fwere jointly estimated using nonlinear least‐squares estimation. These measurements were compared againstR2estimates from T2‐prepared balanced SSFP (T2‐Prep bSSFP) and estimates from multi‐echo gradient echo, which are used widely but prone to error due to different subvoxel weighting. ResultsThe meanR2and values of lung parenchyma obtained from ES‐MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T2 = 61.6 ± 1.7 ms;  = 9.5 ms ± 1.6 ms), respectively. The off‐resonance estimates ranged from −60 to 30 Hz. TheR2from T2‐Prep bSSFP was 15.7 ± 1.7 Hz (T2 = 68.6 ± 8.6 ms) and from multi‐echo gradient echo was 131.2 ± 30.4 Hz ( = 8.0 ± 2.5 ms). Paired t‐test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The meanR2estimate from T2‐Prep bSSFP was slightly smaller than that from ES‐MCSE, whereas the mean and estimates from ES‐MCSE and multi‐echo gradient echo were similar to each other across all subjects. ConclusionsJoint estimation of transverse relaxation rates and off‐resonance is feasible at 0.55 T with a free‐breathing electrocardiogram‐gated and navigator‐gated ES‐MCSE sequence. At 0.55 T, the meanR2of 17.3 Hz is similar to the reported meanR2of 16.7 Hz at 1.5 T, but the mean of 127.5 Hz is about 5–10 times smaller than that reported at 1.5 T. 
    more » « less