skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 12, 2025

Title: Data report: X-ray fluorescence scanning of Sites U1591 and U1599, IODP Expedition 398, Hellenic Arc Volcanic Field
International Ocean Discovery Program (IODP) Expedition 398, Hellenic Arc Volcanic Field, recovered volcanic and nonvolcanic sediments and Messinian evaporites, as well as the nonvolcanic basement. The total recovery of about 3.3 km has the potential to significantly expand our understanding of the volcanic and tectonic history of the Christiana-Santorini-Kolumbo volcanic field and the climate history of the eastern Mediterranean. Here we report semiquantitative bulk elemental analyses of X-ray fluorescence core scans for Site U1591, drilled off Christiani Island, and Site U1599, drilled off Anafi Island, and compare these to records of natural gamma radiation that were measured aboard the R/V JOIDES Resolution.  more » « less
Award ID(s):
1326927
PAR ID:
10572662
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
International Ocean Discovery Program
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program Expedition reports
Volume:
389
Issue:
204
ISSN:
2377-3189
Subject(s) / Keyword(s):
International Ocean Discovery Program IODP JOIDES Resolution Expedition 398 Hellenic Arc Volcanic Field Site U1591 Site U1599 X-ray fluorescence core scanning XRF
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Site U1598 (proposed Site 14A) is located ~8 km northwest of Christiana Island and ~20 km southwest of Santorini (Figure F1) at 521.5 meters below sea level (mbsl). The drill site targeted the volcano-sedimentary fill of the Christiana Basin in two holes (U1598A and U1598B), with a maximum recovery depth of 95.7 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used) and core recoveries of 69% and 34%, respectively. The drill site targeted the volcano-sedimentary fill of the Christiana Basin. This basin was believed to have formed by subsidence along an ENE–WSW fault system before the changing tectonic regime activated the current northeast–southwest rift system in which the Christiana-Santorini-Kolumbo (CSK) volcanic field lies (Tsampouraki-Kraounaki and Sakellariou, 2018; Preine et al., 2022a, 2022b). The Christiana Basin is deeper than the Anhydros and Anafi Basins; its volcano-sedimentary fill potentially recorded the earlier volcanic history of the CSK volcanic field (including the products of Christiana and early Santorini), as well as the younger Santorini and possibly the Milos Volcano to the west along the Hellenic volcanic arc. The now-extinct Christiana Volcano produced lavas and tuffs of unknown ages (Aarburg and Frechen, 1999). An ignimbrite found on Christiani Island (one of the two small islands of the Christiana Volcano), Santorini, and the nonvolcanic island of Anaphi, called the Christiani Ignimbrite, was identified (Keller et al., 2010). Site U1598 was chosen to complement the previously drilled Site U1591. The aim was to retarget a thick pumice layer found at Site U1591 (uppermost ~65 mbsf; Figure F2), for which we had insufficient samples for our scientific aims, to increase our recovery of the interval. The site addresses scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). 
    more » « less
  2. Prior to arrival on site, a decision was made to replace the original primary site (proposed Site CSK-13A) by an alternate site (proposed Site CSK-20A); hence, the latter became Site U1591. This was done to pass through a slightly more complete suite of reflectors in the 800–900 ms two-way traveltime (TWT) interval. Site U1591 is located ~8 km northwest of Christiani Island and ~20 km southwest of Santorini (Figure F1) at 514 meters below sea level (mbsl). It was drilled in three holes (U1591A–U1591C) to a maximum recovery depth of 902.7 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used). Average core recovery was similar in all three holes (U1591A= 66%; U1591B= 43%; U1591C= 58%). The drill site targeted the volcano-sedimentary fill of the Christiana Basin. This basin was believed to have formed by subsidence along an ENE–WSW fault system before the changing tectonic regime activated the current northeast–southwest rift system in which the Christiana-Santorini-Kolumbo (CSK) volcanic field lies (Tsampouraki-Kraounaki and Sakellariou, 2018; Preine et al., 2022a, 2022b). Christiana Basin is deeper than the Anhydros and Anafi Basins; its volcano-sedimentary fill potentially recorded the earlier volcanic history of the CSK volcanic field (including the products of Christiana and early Santorini), as well as younger Santorini and possibly Milos Volcano to the west along the Hellenic volcanic arc. The now-extinct Christiana Volcano produced lavas and tuffs of unknown ages (Aarburg and Frechen, 1999). An ignimbrite found on Christiani Island (one of the two small islands of Christiana Volcano), Santorini, and the nonvolcanic island of Anaphi, called the Christiani Ignimbrite, was identified (Keller et al., 2010). Six seismic units were previously recognized in the Christiana Basin (Preine et al., 2022a, 2022b; Figure F2). Site U1591 was chosen to pass through Seismic Units U1–U6, including volcaniclastics from Santorini and Christiana, and to target the top few meters of the prevolcanic basement below Unit U1. We received permission from the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel to drill to the Alpine basement at this site in an advanced piston corer/extended core barrel/rotary core barrel (APC/XCB/RCB) drilling strategy involving three holes. The aims of Site U1591 were (1) to better date the volcanic activity of Christiana using biostratigraphic and magnetostratigraphic means and determine whether the CSK volcanic field had Pliocene volcanism similar to the Milos Volcano farther west; (2) to relate the Christiana volcanism to subsidence along the ENE–WSW fault sets and to the activation of the northeast–southwest fault sets; and (3) to seek the submarine equivalent of the Christiani Ignimbrite. By using deeper coring (and seismic profiles) to reconstruct the volcanic, sedimentary, and tectonic histories of the Christiana Volcano, and possibly the Milos Volcano, we aimed to complement the Santorini and Kolumbo volcanic records of Sites U1589 and U1592 and therefore access a near-continuous time series of volcanism of the CSK volcanic field since rift inception. Site U1591 addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). 
    more » « less
  3. The objectives of International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. During the expedition, 10 primary and alternate sites that were originally proposed were drilled, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor, less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the scientific objectives once the laboratory work has been done. 
    more » « less
  4. The objectives of International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. During the expedition, 10 primary and alternate sites that were originally proposed were drilled, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor, less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the scientific objectives once the laboratory work has been done. 
    more » « less
  5. Abstract In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to 1.17 Ma) shield lavas with a primordial “common” (focus zone) component interlayered with lavas that sample a depleted mantle component. Following ~1.15 Myr of volcanic quiescence, rejuvenated volcanism initiated at 24.3 ka and samples an EM1 (enriched mantle 1) component. The timing of the initiation of rejuvenated volcanism on Tutuila suggests that rejuvenated volcanism may be tectonically driven, as Samoan hotspot volcanoes approach the northern terminus of the Tonga Trench. This is consistent with a model where the timing of rejuvenated volcanism at Tutuila and at other Samoan volcanoes relates to their distance from the Tonga Trench. Notably, the Samoan rejuvenated lavas have EM1 isotopic compositions distinct from shield lavas that are geochemically similar to “petit spot” lavas erupted outboard of the Japan Trench and late stage lavas erupted at Christmas Island located outboard of the Sunda Trench. Therefore, like the Samoan rejuvenated lavas, petit spot volcanism in general appears to be related to tectonic uplift outboard of subduction zones, and existing geochemical data suggest that petit spots share similar EM1 isotopic signatures. 
    more » « less