This study investigates the combined effects of environmental pollutants (lead, cadmium, total mercury) and behavioral factors (alcohol consumption, smoking) on depressive symptoms in women. Data from the National Health and Nutrition Examination Survey (NHANES) 2017–2018 cycle, specifically exposure levels of heavy metals in blood samples, were used in this study. The analysis of these data included the application of descriptive statistics, linear regression, and Bayesian Kernel Machine Regression (BKMR) to explore associations between environmental exposures, behavioral factors, and depression. The PHQ-9, a well-validated tool that assesses nine items for depressive symptoms, was used to evaluate depression severity over the prior two weeks on a 0–3 scale, with total scores ranging from 0 to 27. Exposure levels of heavy metals were measured in blood samples. BKMR was used to estimate the exposure–response relationship, while posterior inclusion probability (PIP) in BKMR was used to quantify the likelihood that a given exposure was included in the model, reflecting its relative importance in explaining the outcome (depression) within the context of other predictors in the mixture. A descriptive analysis showed mean total levels of lead, cadmium, and total mercury at 1.21 µg/dL, 1.47 µg/L, and 0.80 µg/L, respectively, with a mean PHQ-9 score of 5.94, which corresponds to mild depressive symptoms based on the PHQ-9 scoring. Linear regression indicated positive associations between depression and lead as well as cadmium, while total mercury had a negative association. Alcohol and smoking were also positively associated with depression. These findings were not significant, but limitations in linear regression prompted a BKMR analysis. BKMR posterior inclusion probability (PIP) analysis revealed alcohol and cadmium as significant contributors to depressive symptoms, with cadmium (PIP = 0.447) and alcohol (PIP = 0.565) showing notable effects. Univariate and bivariate analyses revealed lead and total mercury’s strong relationship with depression, with cadmium showing a complex pattern in the bivariate analysis. A cumulative exposure analysis of all metals and behavioral factors concurrently demonstrated that higher quantile levels of combined exposures were associated with an increased risk of depression. Finally, a single variable-effects analysis in BKMR revealed lead, cadmium, and alcohol had a stronger impact on depression. Overall, the study findings suggest that from exposure to lead, cadmium, mercury, alcohol, and smoking, cadmium and alcohol consumption emerge as key contributors to depressive symptoms. These results highlight the need to address both environmental and lifestyle choices in efforts to mitigate depression. 
                        more » 
                        « less   
                    This content will become publicly available on February 4, 2026
                            
                            Combined Effects of Social and Behavioral Factors on Stress and Depression
                        
                    
    
            Background: Chronic stress, driven by the persistent activation of the body’s stress response system—including the sympathetic nervous system and hypothalamic–pituitary–adrenal (HPA) axis—has far-reaching effects on both physical and mental health. This study examines the combined effects of social and behavioral factors on a latent variable consisting of stress and depressive symptoms, using a comprehensive framework to explore the complex interactions of these factors. Methods: Leveraging data from the United States Centers for Disease Control and Prevention’s (CDC’s) National Health and Nutrition Examination Survey (NHANES), we operationalized allostatic load—a measure of cumulative physiological stress—through 10 biomarkers spanning cardiovascular, inflammatory, and metabolic systems. Depressive symptoms were measured via the Patient Health Questionnaire-9 (PHQ-9), and a latent variable capturing the shared variance between stress and depressive symptoms was derived using factor analysis. To assess the influence of social (income and education) and behavioral (alcohol consumption and smoking) factors on this latent variable, we employed Bayesian Kernel Machine Regression (BKMR), allowing us to examine potential non-linear and interactive effects among these predictors. Results: Our results revealed a significant positive association between allostatic load and depressive symptoms across the sample, regardless of ethnic background. Alcohol consumption emerged as a key behavioral factor, with significant positive associations with stress. Conversely, education showed a protective effect, with higher education levels associated with decreased stress and depressive symptoms. Conclusions: These findings underscore the importance of addressing both social determinants and behavioral risk factors in mitigating the cumulative impacts of stress and depressive symptoms. By highlighting the roles of alcohol consumption and education, this study provides insights that can inform public health strategies aimed at promoting resilience and reducing stress-related health disparities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2401878
- PAR ID:
- 10572776
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Diseases
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 2079-9721
- Page Range / eLocation ID:
- 46
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background: Chronic stress, characterized by sustained activation of physiological stress response systems, is a key risk factor for numerous health conditions. Allostatic load (AL), a biomarker of cumulative physiological stress, offers a quantitative measure of this burden. Lifestyle habits such as alcohol consumption and smoking, alongside environmental exposures to toxic metals like lead, cadmium, and mercury, were individually implicated in increasing AL. However, the combined impact of these lifestyle habits and environmental factors remains underexplored, particularly in populations facing co-occurring exposures. This study aims to investigate the joint effects of lifestyle habits and environmental factors on AL, using data from the NHANES 2017–2018 cycle. By employing linear regression and Bayesian Kernel Machine Regression (BKMR), we identify key predictors and explore interaction effects, providing new insights into how cumulative exposures contribute to chronic stress. Results from BKMR analysis underscore the importance of addressing combined exposures, particularly the synergistic effects of cadmium and alcohol consumption, in managing physiological stress. Methods: Descriptive statistics were calculated to summarize the dataset, and multivariate linear regression was performed to assess associations between exposures and AL. BKMR was employed to estimate exposure–response functions and posterior inclusion probabilities (PIPs), focusing on identifying key predictors of AL. Results: Descriptive analysis indicated that the mean levels of lead, cadmium, and mercury were 1.23 µg/dL, 0.49 µg/dL, and 1.37 µg/L, respectively. The mean allostatic load was 3.57. Linear regression indicated that alcohol consumption was significantly associated with increased AL (β = 0.0933; 95% CI [0.0369, 0.1497]; p = 0.001). Other exposures, including lead (β = −0.1056; 95% CI [−0.2518 to 0.0408]; p = 0.157), cadmium (β = −0.0001, 95% CI [−0.2037 to 0.2036], p = 0.999), mercury (β = −0.0149; 95% CI [−0.1175 to 0.0877]; p = 0.773), and smoking (β = 0.0129; 95% CI [−0.0086 to 0.0345]; p = 0.508), were not significant. BKMR analysis confirmed alcohol’s strong importance for AL, with a PIP of 0.9996, and highlighted a non-linear effect of cadmium (PIP = 0.7526). The interaction between alcohol and cadmium showed a stronger effect on AL at higher exposure levels. In contrast, lead, mercury, and smoking demonstrated minimal effects on AL. Conclusions: Alcohol consumption and cadmium exposure were identified as key contributors to increased allostatic load, while other exposures showed no significant associations. These findings emphasize the importance of addressing lifestyle habits and environmental factors in managing physiological stress.more » « less
- 
            Few studies have used longitudinal approaches to consider the cumulative impact of COVID-19-related stressors (CRSs) on the psychological adjustment of mothers and children. In the current study, we tracked changes in maternal depressive symptoms and children’s behavioral problems from approximately 2 years before the pandemic (T1) to May through August 2020 (T2). Second, we explored maternal hair cortisol and dehydroepiandrosterone as predictors of change in maternal depressive symptoms. Mothers (N = 120) reported on maternal and child psychological adjustment at both time points. Hair hormone data were collected in the lab at T1. Results suggest increases in children’s internalizing symptoms from T1 to T2 and that higher levels of CRSs were associated with increased maternal depressive symptoms. Maternal and child adjustment were correlated. Maternal hair cortisol, but not dehydroepiandrosterone, was associated with significant increases in depressive symptoms. Findings underscore the importance of considering the family system and cumulative risk exposure on maternal and child mental health.more » « less
- 
            Few studies have used longitudinal approaches to consider the cumulative impact of COVID-19-related stressors (CRSs) on the psychological adjustment of mothers and children. In the current study, we tracked changes in maternal depressive symptoms and children’s behavioral problems from approximately 2 years before the pandemic (T1) to May through August 2020 (T2). Second, we explored maternal hair cortisol and dehydroepiandrosterone as predictors of change in maternal depressive symptoms. Mothers ( N = 120) reported on maternal and child psychological adjustment at both time points. Hair hormone data were collected in the lab at T1. Results suggest increases in children’s internalizing symptoms from T1 to T2 and that higher levels of CRSs were associated with increased maternal depressive symptoms. Maternal and child adjustment were correlated. Maternal hair cortisol, but not dehydroepiandrosterone, was associated with significant increases in depressive symptoms. Findings underscore the importance of considering the family system and cumulative risk exposure on maternal and child mental health.more » « less
- 
            The transition to adolescence is a critical period for mental health development. Socio-experiential environments play an important role in the emergence of depressive symptoms with some adolescents showing more sensitivity to social contexts than others. Drawing on recent developmental neuroscience advances, we examined whether hippocampal volume amplifies social context effects in the transition to adolescence. We analyzed 2-y longitudinal data from the Adolescent Brain Cognitive Development (ABCD®) study in a diverse sample of 11,832 youth (mean age: 9.914 y; range: 8.917 to 11.083 y; 47.8% girls) from 21 sites across the United States. Socio-experiential environments (i.e., family conflict, primary caregiver’s depressive symptoms, parental warmth, peer victimization, and prosocial school environment), hippocampal volume, and a wide range of demographic characteristics were measured at baseline. Youth’s symptoms of major depressive disorder were assessed at both baseline and 2 y later. Multilevel mixed-effects linear regression analyses showed that negative social environments (i.e., family conflict, primary caregiver’s depressive symptoms, and peer victimization) and the absence of positive social environments (i.e., parental warmth and prosocial school environment) predicted greater increases in youth’s depressive symptoms over 2 y. Importantly, left hippocampal volume amplified social context effects such that youth with larger left hippocampal volume experienced greater increases in depressive symptoms in more negative and less positive social environments. Consistent with brain–environment interaction models of mental health, these findings underscore the importance of families, peers, and schools in the development of depression during the transition to adolescence and show how neural structure amplifies social context sensitivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
