skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wild Foundress Queen Bumble Bees Make Numerous, Short Foraging Trips and Exhibit Frequent Nest Failure: Insights From Trap‐Nesting and RFID Tracking
ABSTRACT The overwhelming majority of research on wild bumble bees has focused on the social colony stage. Nest‐founding queens in the early season are difficult to study because incipient nests are challenging to find in the wild and the foundress queen flight period is very short relative to the entire nesting period. As a result, natural history information on foundress queens is exceedingly rare. New methodological approaches are needed to adequately study this elusive life stage. We trap‐nested wild queen bumble bees in artificial nest boxes in Gothic, Colorado and used a custom‐built radio frequency identification (RFID) system to continuously record queen foraging activity (inferred from entering and exiting the nest) for the majority of their spring flight periods. Foundress queens made frequent, short foraging trips, which tended to increase in duration over the course of the flight period. All queens who produced adult workers ceased foraging within approximately 1 week after workers emerged in the nest. We observed frequent nest failure among foundress queens: Fewer than one quarter of queens who laid eggs in nest boxes went on to produce reproductive gynes at the end of the season. We also report nest characteristics and curious phenomena we observed, including conspecific nest invasion and queens remaining outside the nest overnight. We present this trap‐nesting and subsequent RFID tracking method as a valuable, albeit resource‐intensive, path forward for uncovering new information about the elusive, incipient life stage of wild bumble bees.  more » « less
Award ID(s):
2046158
PAR ID:
10572937
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
2
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests 
    more » « less
  2. Abstract BackgroundEvolution has shaped diverse reproductive investment strategies, with some organisms integrating environmental cues into their reproductive decisions. In animal societies, social cues can further influence reproductive decisions in ways that might support the survival and success of the social group. Bumble bees are a lineage of eusocial insects wherein queens initiate nests independently. Bumble bee queens enter their eusocial phase only after successfully rearing their first offspring and thereafter exhibit an increased rate of egg-laying. We tested the idea that during bumble bee nest initiation, queen reproduction is socially context-dependent and under the control of social conditions in the nest. ResultsOur findings reveal that in the bumble beeBombus impatiens, queen egg-laying follows a dynamic, stereotypical pattern and is also heavily influenced by social group members. During the initial stages of nest initiation, accelerated egg-laying in queens is associated with the presence of workers or older larvae and pupae. Moreover, workers are required for queens to maintain increased levels of egg laying across the nest initiation stage. We also confirmed a previously-described pattern where queens temporarily decelerate egg-laying early in nest-founding, only to increase it again when the first adult workers are soon to emerge. This “pause” in egg-laying was observed in allB. impatiensqueens as well as in additional species examined. ConclusionsOur results support the idea that eusocial systems can employ socially context-dependent control of queen egg-laying as a reproductive strategy. In some solitary-founding lineages, including bumble bees, queens may reach their full reproductive potential only after the emergence of the first adult workers, who then take over brood care. This stands in contrast to the hyper-reproductivity observed in some eusocial species. The presence of workers and older brood (who will soon eclose) not only alleviates queen brood care responsibilities but may also provide signals that cause queens to increase their reproductive output. These phenomena may allow queens to adapt their reproductive output to the conditions of the colony. Broadly, these findings highlight the dynamic interplay between social conditions and reproduction in bumble bees. 
    more » « less
  3. Synopsis Studies on the physiological states of wild-caught organisms are essential to uncovering the links between ecological and physiological processes. Bumble bee queens emerge from overwintering in the spring. At this time, queens develop their ovaries and search for a nest site in which to start a colony. Whether these two processes, ovary development and nest-searching, interact with or influence one another remains an unresolved question in behavioral physiology. We explored the hypothesis that ovary development and nest-searching might be mechanistically connected, by testing whether (1) ovary development precedes nest-searching behavior; (2) nest occupation precedes ovary development; or (3) ovary development and nest-searching occur independently, in bumble bee (Bombus vosnesenskii) queens. We collected queens either nest-searching (and thus prior to occupying a nest) or pollen-collecting (and thus provisioning an occupied nest) and measured their degree of ovary activation. We further screened these queens for parasites or other symbionts, to identify additional factors that may impact their reproductive success at this time. We found that queens searched for and occupied nests at all stages of ovary development, indicating that these processes occur independently in this system. Nest-searching queens were more likely to have substantial mite loads than pollen-collecting queens, who had already located and occupied a nest. However, mite loads did not significantly predict ovary developmental status. Collectively, our work shows that nesting status and symbionts alone are insufficient to explain the variation in spring bumble bee queen ovary development. We propose that ovary development and nest-searching occur opportunistically, which may enable queens to begin laying eggs earlier in the season than if these processes occurred in discrete succession. 
    more » « less
  4. Leppla, Norman (Ed.)
    Abstract Bombus vosnesenskii Radowszkowski, 1862 is one of three bumble bee species commercially available for pollination services in North America; however, little is documented about B. vosnesenskii colony life cycle or the establishment of ex situ rearing, mating, and overwintering practices. In this study, we documented nest success, colony size, and gyne production; recorded the duration of mating events; assessed overwintering survival of mated gynes; and evaluated second-generation nest success for colonies established from low- and high-elevation wild-caught B. vosnesenskii gynes. Of the 125 gynes installed, 62.4% produced brood cells (nest initiation) and 43.2% had at least 1 worker eclose (nest establishment). High-elevation B. vosnesenskii gynes had significantly higher nest initiation and establishment success than low-elevation gynes. However, low-elevation colonies were significantly larger with queens producing more gynes on average. Mating was recorded for 200 low-elevation and 37 high-elevation gynes, resulting in a mean duration of 62 and 51 min, respectively. Mated gynes were then placed into cold storage for 54 days to simulate overwintering, which resulted in 59.1% of low-elevation gynes surviving and 91.9% of high-elevation gynes surviving. For second-generation low-elevation gynes, 26.4% initiated nesting and 14.3% established nesting. Second-generation high-elevation gynes did not initiate nesting despite CO2 narcosis treatments. Overall, these results increase our understanding of B. vosnesenskii nesting, mating, and overwintering biology from 2 elevations. Furthermore, this study provides information on successful husbandry practices that can be used by researchers and conservationists to address knowledge gaps and enhance the captive rearing of bumble bees. 
    more » « less
  5. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less