Developing simple, sample-efficient learning algorithms for robust classification is a pressing issue in today's tech-dominated world, and current theoretical techniques requiring exponential sample complexity and complicated improper learning rules fall far from answering the need. In this work we study the fundamental paradigm of (robust) empirical risk minimization (RERM), a simple process in which the learner outputs any hypothesis minimizing its training error. RERM famously fails to robustly learn VC classes (Montasser et al., 2019a), a bound we show extends even to `nice' settings such as (bounded) halfspaces. As such, we study a recent relaxation of the robust model called tolerant robust learning (Ashtiani et al., 2022) where the output classifier is compared to the best achievable error over slightly larger perturbation sets. We show that under geometric niceness conditions, a natural tolerant variant of RERM is indeed sufficient for γ-tolerant robust learning VC classes over ℝd, and requires only Õ (VC(H)dlogDγδϵ2) samples for robustness regions of (maximum) diameter D.
more »
« less
Adversarially Robust Hypothesis Transfer Learning
In this work, we explore Hypothesis Transfer Learning (HTL) under adversarial attacks. In this setting, a learner has access to a training dataset of size n from an underlying distribution D and a set of auxiliary hypotheses. These auxiliary hypotheses, which can be viewed as prior information originating either from expert knowledge or as pre-trained foundation models, are employed as an initialization for the learning process. Our goal is to develop an adversarially robust model for D. We begin by examining an adversarial variant of the regularized empirical risk minimization learning rule that we term A-RERM. Assuming a nonnegative smooth loss function with a strongly convex regularizer, we establish a bound on the robust generalization error of the hypothesis returned by A-RERM in terms of the robust empirical loss and the quality of the initialization. If the initialization is good, i.e., there exists a weighted combination of auxiliary hypotheses with a small robust population loss, the bound exhibits a fast rate of O(1/n). Otherwise, we get the standard rate of O(1/ √ n). Additionally, we provide a bound on the robust excess risk which is similar in nature, albeit with a slightly worse rate. We also consider solving the problem using a practical variant, namely proximal stochastic adversarial training, and present a bound that depends on the initialization. This bound has the same dependence on the sample size as the ARERM bound, except for an additional term that depends on the size of the adversarial perturbation.
more »
« less
- Award ID(s):
- 1943251
- PAR ID:
- 10572970
- Publisher / Repository:
- Proceedings of the 41st International Conference on Machine Learning, PMLR 235, 2024
- Date Published:
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width m of the DNNs or the dimension d of the data, with an extra factor of at least O(√m) or O(√d). This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being O(ln(dm)). The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the uniform covering number, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.more » « less
-
Guruswami, Venkatesan (Ed.)We consider the problem of training a multi-layer over-parametrized neural network to minimize the empirical risk induced by a loss function. In the typical setting of over-parametrization, the network width m is much larger than the data dimension d and the number of training samples n (m = poly(n,d)), which induces a prohibitive large weight matrix W ∈ ℝ^{m× m} per layer. Naively, one has to pay O(m²) time to read the weight matrix and evaluate the neural network function in both forward and backward computation. In this work, we show how to reduce the training cost per iteration. Specifically, we propose a framework that uses m² cost only in the initialization phase and achieves a truly subquadratic cost per iteration in terms of m, i.e., m^{2-Ω(1)} per iteration. Our result has implications beyond standard over-parametrization theory, as it can be viewed as designing an efficient data structure on top of a pre-trained large model to further speed up the fine-tuning process, a core procedure to deploy large language models (LLM).more » « less
-
null (Ed.)Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. In this work, we strike a better balance by considering a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate. We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear classifier, and show an interesting interplay between the expressivity and stability of the (supervised) representation map and a notion of margin in the feature space. We bound the robust risk (to $$\ell_2$$-bounded perturbations) of hypotheses parameterized by dictionaries that achieve a mild encoder gap on training data. Furthermore, we provide a robustness certificate for end-to-end classification. We demonstrate the applicability of our analysis by computing certified accuracy on real data, and compare with other alternatives for certified robustness.more » « less
-
This paper proposes a novel non-parametric multidimensional convex regression estimator which is designed to be robust to adversarial perturbations in the empirical measure. We minimize over convex functions the maximum (over Wasserstein perturbations of the empirical measure) of the absolute regression errors. The inner maximization is solved in closed form resulting in a regularization penalty involves the norm of the gradient. We show consistency of our estimator and a rate of convergence of order O˜(n−1/d), matching the bounds of alternative estimators based on square-loss minimization. Contrary to all of the existing results, our convergence rates hold without imposing compactness on the underlying domain and with no a priori bounds on the underlying convex function or its gradient norm.more » « less
An official website of the United States government

