Abstract As global mean temperature rises, extreme drought events are expected to increasingly affect regions of the United States that are crucial for agriculture, forestry, and natural ecology. A pressing need is to understand and anticipate the conditions under which extreme drought causes catastrophic failure to vegetation in these areas. To better predict drought impacts on ecosystems, we first must understand how specific drivers, namely, atmospheric aridity and soil water stress, affect land surface processes during the evolution of flash drought events. In this study, we evaluated when vapor pressure deficit (VPD) and soil moisture thresholds corresponding to photosynthetic shutdown were crossed during flash drought events across different climate zones and land surface characteristics in the United States. First, the Dynamic Canopy Biophysical Properties (DCBP) model was used to estimate the thresholds that define reduced photosynthesis by assimilating vegetation phenology data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to a predictive phenology model. Next, we characterized and quantified flash drought onset, intensity, and duration using the standardized evaporative stress ratio (SESR) and NLDAS-2 reanalysis. Once periods of flash drought were identified, we investigated how VPD and soil moisture coevolved across regions and plant functional types. Results demonstrate that croplands and grasslands tend to be more sensitive to soil water limitations than trees across different regions of the United States. We found that whether VPD or soil moisture was the primary driver of plant water stress during drought was largely region specific. The results of this work will help to inform land managers of early warning signals relevant for specific ecosystems under threat of flash drought events.
more »
« less
Drivers and trends of streamflow droughts in natural and human-impacted basins across the contiguous United States
This dataset contains: Values for 42 variables related to topography, climate, vegetation, geology, and anthropogenic activities collected from 2001 to 2020. These variables were used to assess the drivers of streamflow drought deficit and duration across 2,550 stream gauges in the contiguous United States, including both natural and human-impacted sites. The computation method for each factor is detailed in Table 1. The dataset also includes trend analyses of drought duration and deficit from 1980 to 2020, performed using the Mann-Kendall test under three conditions: independence, short-term persistence, and long-term persistence. The complete analysis and findings are presented in Vicario, S.A., Hornberger, G.M., Mazzoleni, M., Garcia, M. (2025), "Drivers and trends of streamflow droughts in natural and human-impacted basins across the contiguous United States," Journal of Hydrology, DOI: https://doi.org/10.1016/j.jhydrol.2025.132908.
more »
« less
- Award ID(s):
- 1923880
- PAR ID:
- 10573284
- Publisher / Repository:
- CUASHI Hydroshare
- Date Published:
- Edition / Version:
- 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This resource contains 49 factors categorized into five groups: climatic (14), topographic (11), vegetation-related (5), anthropogenic (12), and geologic (7) factors, concerning 383 watersheds within the GAGES-II gages dataset (https:// water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml) across the contiguous United States (CONUS). The selection of the 383 watersheds out of the 9067 (in the CONUS) from GAGES-II was determined by the availability of daily streamflow data from 1990 to 2020 and its anthropogenic influence. For further details, refer to section 2.1 of https://doi.org/10.1016/j.jhydrol.2024.130984. The factors represent average values for each watershed spanning 1990 to 2020, calculated using publicly available data. Detailed information on these factors, including their sources and calculation methods, is provided in Tables 1 and 2 of the PDF document (Methodology_factors.pdf). The Excel file (Factors.xlsx) contains the classification of the gages and their associated factor values. The computation of these factors was conducted for the manuscript authored by Sara Alonso Vicario, George M. Hornberger, Maurizio Mazzoleni, and Margaret Garcia, titled "The Importance of Climate and Anthropogenic Influence in Precipitation Partitioning in the Contiguous United States," published in the Journal of Hydrology, Volume 633 (2024). The manuscript is accessible at https://doi.org/10.1016/j.jhydrol.2024.130984.more » « less
-
Abstract As drought and wildfire frequency increase across the western United States, our ability to predict how water resources will respond to these disturbances depends on our understanding of the feedbacks that maintain watershed function and streamflow. Previous studies of non‐perennial headwater streams have ranked drivers of low‐flow conditions; however, there is a limited understanding of the interactions between these drivers and the processes through which these interactions affect streamflow. Here, we use stream water level, soil moisture, sap flow, and vapor pressure deficit data to investigate ecohydrological interactions along a mountainous headwater stream. Correlation and cross‐correlation analyses of these variables show that ecohydrological interactions are (a) nonlinear and (b) interconnected, suggesting that analyses assuming linearity and independence of each driver are inadequate for quantifying these interactions. To account for these issues and investigate causal linkages, we use convergent cross‐mapping (CCM) to characterize the feedbacks that influence non‐perennial streamflow. CCM is a nonlinear, dynamic method that has only recently been applied to hydrologic systems. CCM results reveal that atmospheric losses associated with local sap flow and vapor pressure deficit are driving changes in soil moisture and streamflow (p < 0.01) and that atmospheric losses influence stream water more directly than shallow soil moisture. These results also demonstrate that riparian processes continue to affect subsurface flows in the channel corridor even after stream drying. This study proposes a nonlinear framework for quantifying the ecohydrologic interactions that may determine how headwater streams respond to disturbance.more » « less
-
Abstract Over half of global rivers and streams lack perennial flow, and understanding the distribution and drivers of their flow regimes is critical for understanding their hydrologic, biogeochemical, and ecological functions. We analyzed nonperennial flow regimes using 540 U.S. Geological Survey watersheds across the contiguous United States from 1979 to 2018. Multivariate analyses revealed regional differences in no‐flow fraction, date of first no flow, and duration of the dry‐down period, with further divergence between natural and human‐altered watersheds. Aridity was a primary driver of no‐flow metrics at the continental scale, while unique combinations of climatic, physiographic and anthropogenic drivers emerged at regional scales. Dry‐down duration showed stronger associations with nonclimate drivers compared to no‐flow fraction and timing. Although the sparse distribution of nonperennial gages limits our understanding of such streams, the watersheds examined here suggest the important role of aridity and land cover change in modulating future stream drying.more » « less
-
Abstract Streamflow droughts are receiving increased attention worldwide due to their impact on the environment and economy. One region of concern is the Midwestern United States, whose agricultural productivity depends on subsurface pipes known as tile drains to improve trafficability and soil conditions for crop growth. Tile drains accomplish this by rapidly transporting surplus soil moisture and shallow groundwater from fields, resulting in reduced watershed storage. However, no work has previously examined the connection between tile drainage and streamflow drought. Here, we pose the question: does the extent of watershed-level tile drainage lead to an increased susceptibly and magnitude of streamflow droughts? To answer this, we use daily streamflow data for 122 watersheds throughout the Midwestern United States to quantify streamflow drought duration, frequency, and intensity. Using spatial multiple regression models, we find that agricultural tile drainage generates statistically significant (p< 0.05) increases in streamflow drought duration and intensity while significantly reducing drought frequency. The magnitude of the effect of tile drainage on streamflow drought characteristics is similar to that of water table depth and precipitation seasonality, both of which are known to influence streamflow droughts. Furthermore, projected changes in regional precipitation characteristics will likely drive the installation of additional tile drainage. We find that for each 10% increase in tile-drained watershed area, streamflow drought duration and intensity increase by 0.03 d and 12%, respectively, while frequency decreases by 0.10 events/year. Such increases in tile drainage may lead to more severe streamflow droughts and have a detrimental effect on the socio-environmental usage of streams throughout the Midwest.more » « less