Abstract C−H amination and amidation by catalytic nitrene transfer are well‐established and typically proceed via electrophilic attack of nitrenoid intermediates. In contrast, the insertion of (formal) terminal nitride ligands into C−H bonds is much less developed and catalytic nitrogen atom transfer remains unknown. We here report the synthesis of a formal terminal nitride complex of palladium. Photocrystallographic, magnetic, and computational characterization support the assignment as an authentic metallonitrene (Pd−N) with a diradical nitrogen ligand that is singly bonded to PdII. Despite the subvalent nitrene character, selective C−H insertion with aldehydes follows nucleophilic selectivity. Transamidation of the benzamide product is enabled by reaction with N3SiMe3. Based on these results, a photocatalytic protocol for aldehyde C−H trimethylsilylamidation was developed that exhibits inverted, nucleophilic selectivity as compared to typical nitrene transfer catalysis. This first example of catalytic C−H nitrogen atom transfer offers facile access to primary amides after deprotection.
more »
« less
Evidence for Dearomatizing Spirocyclization and Dynamic Effects in the Quasi-stereospecific Nitrogen Deletion of Tetrahydroisoquinolines
Selectivity in organic chemistry is generally presumed to arise from energy differences between competing selectivity-determining transition states. However, in cases where static density functional theory (DFT) fails to reproduce experimental product distributions, dynamic effects can be examined to understand the behavior of more complex reaction systems. Previously, we reported a method for nitrogen deletion of secondary amines which relies on the formation of isodiazene intermediates that subsequently extrude dinitrogen with concomitant C–C bond formation via a caged diradical. Herein, a detailed mechanistic analysis of the nitrogen deletion of 1-aryl-tetrahydroisoquinolines is presented, suggesting that in this system the previously determined diradical mechanism undergoes dynamically controlled partitioning to both the normal 1,5-coupling product and an unexpected spirocyclic dearomatized intermediate, which converges to the expected indane by an unusually facile 1,3-sigmatropic rearrangement. This mechanism is not reproduced by static DFT but is supported by quasi-classical molecular dynamics calculations and unifies several unusual observations in this system, including partial chirality transfer, nonstatistical isotopic scrambling at the ethylene bridge, the isolation of spirocyclic dearomatized species in a related heterocyclic series, and the observation that introduction of an 8-substituent dramatically improves enantiospecificity.
more »
« less
- Award ID(s):
- 2235826
- PAR ID:
- 10573319
- Publisher / Repository:
- Journal of the American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 146
- Issue:
- 26
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 17719 to 17727
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We describe effective development of the highly diastereoselective synthesis of double helical tetraamine 2-H2-C2 and propose a mechanism for its formation. The resolution of 2-H2-C2 is facilitated by a high racemization barrier of 43 kcal mol–1 and it is implemented via either a chiral auxiliary or preparative supercritical fluid chromatography. This enables preparation of the first high-spin neutral diradical, with spin density delocalized within an enantiomeric double helical π-system. The presence of two effective 3-electron C–N bonds in the diradical leads to: (1) the triplet (S = 1) high-spin ground state with a singlet-triplet energy gap of 0.4 kcal mol–1 and (2) the long half-life of up to 6 days in 2-MeTHF at room temperature. The diradical possesses a racemization barrier of at least 26 kcal mol–1 in 2-MeTHF at 293 K and chiroptical properties, with an absorption anisotropy factor |g| ≈ 0.005 at 548 nm. These unique magnetic and optical properties of our diradical form the basis for the development of next-generation spintronic devices. 1 Introduction 2 Synthesis and Resolution of the C 2-Symmetric Double Helical Tetraamine 2-H2-C 2 3 Synthesis and Characterization of Neutral High-Spin Aminyl Diradical 22• -C 2 4 Conclusionmore » « less
-
The selective functionalization of remote C–H bonds via intramolecular hydrogen atom transfer (HAT) is transformative for organic synthesis. This radical-mediated strategy provides access to novel reactivity that is complementary to closed-shell pathways. As modern methods for mild generation of radicals are continually developed, inherent selectivity paradigms of HAT mechanisms offer unparalleled opportunities for developing new strategies for C–H functionalization. This review outlines the history, recent advances, and mechanistic underpinnings of intramolecular HAT as a guide to addressing ongoing challenges in this arena. 1 Introduction 2 Nitrogen-Centered Radicals 2.1 sp3 N-Radical Initiation 2.2 sp2 N-Radical Initiation 3 Oxygen-Centered Radicals 3.1 Carbonyl Diradical Initiation 3.2 Alkoxy Radical Initiation 3.3 Non-alkoxy Radical Initiation 4 Carbon-Centered Radicals 4.1 sp2 C-Radical Initiation 4.2 sp3 C-Radical Initiation 5 Conclusionmore » « less
-
Abstract The chemical reduction of a bilayer spironanographene,spiro‐NG(C137H120), with Na and K metals in the presence of [2.2.2]cryptand to yield [Na+(2.2.2‐cryptand)](C137H121−) (1) and [K+(2.2.2‐cryptand)](C137H121−) (2), respectively, is reported. X‐ray crystallography reveals the formation of a new “naked” anion (spiro‐NGH−), in which spirocyclic ring cleavage and subsequent hydrogenation have occurred. Density Functional Theory (DFT) calculations suggest that the generation of the radical anion of the parent nanographene (spiro‐NG•−), upon electron acceptance from Na and K metals, induces the cleavage of the strained spirobifluorene core. The resulting spin density localizes on a particular carbon atom, previously attached to the spiranic sp3carbon atom, facilitating a site‐specific hydrogenation to afford (spiro‐NGH−). The electrostatic potential map of this anion reveals electron density concentrated at the five‐membered ring of the readily formed indenyl fragment, thus enhancing the aromaticity of the system. Furthermore, nuclear magnetic resonance (NMR) and UV–vis absorption spectroscopy experiments allowed to follow the in situ reduction and hydrogenation processes in detail.more » « less
-
Synthetic methods that utilise iron to facilitate C–H bond activation to yield new C–C and C–heteroatom bonds continue to attract significant interest. However, the development of these systems is still hampered by a limited molecular-level understanding of the key iron intermediates and reaction pathways that enable selective product formation. While recent studies have established the mechanism for iron-catalysed C–H arylation from aryl-nucleophiles, the underlying mechanistic pathway of iron-catalysed C–H activation/functionalisation systems which utilise electrophiles to establish C–C and C–heteroatom bonds has not been determined. The present study focuses on an iron-catalysed C–H allylation system, which utilises allyl chlorides as electrophiles to establish a C–allyl bond. Freeze-trapped inorganic spectroscopic methods ( 57 Fe Mössbauer, EPR, and MCD) are combined with correlated reaction studies and kinetic analyses to reveal a unique and rapid reaction pathway by which the allyl electrophile reacts with a C–H activated iron intermediate. Supporting computational analysis defines this novel reaction coordinate as an inner-sphere radical process which features a partial iron–bisphosphine dissociation. Highlighting the role of the bisphosphine in this reaction pathway, a complementary study performed on the reaction of allyl electrophile with an analogous C–H activated intermediate bearing a more rigid bisphosphine ligand exhibits stifled yield and selectivity towards allylated product. An additional spectroscopic analysis of an iron-catalysed C–H amination system, which incorporates N -chloromorpholine as the C–N bond-forming electrophile, reveals a rapid reaction of electrophile with an analogous C–H activated iron intermediate consistent with the inner-sphere radical process defined for the C–H allylation system, demonstrating the prevalence of this novel reaction coordinate in this sub-class of iron-catalysed C–H functionalisation systems. Overall, these results provide a critical mechanistic foundation for the rational design and development of improved systems that are efficient, selective, and useful across a broad range of C–H functionalisations.more » « less
An official website of the United States government

