IntroductionThe moment quantities associated with the nonlinear Schrödinger equation offer important insights into the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities are amenable to both analytical and numerical treatments. MethodsIn this paper, we present a data-driven approach associated with the “Sparse Identification of Nonlinear Dynamics” (SINDy) to capture the evolution behaviors of such moment quantities numerically. Results and DiscussionOur method is applied first to some well-known closed systems of ordinary differential equations (ODEs) which describe the evolution dynamics of relevant moment quantities. Our examples are, progressively, of increasing complexity and our findings explore different choices within the SINDy library. We also consider the potential discovery of coordinate transformations that lead to moment system closure. Finally, we extend considerations to settings where a closed analytical form of the moment dynamics is not available.
more »
« less
This content will become publicly available on January 21, 2026
Data-driven model discovery and model selection for noisy biological systems
Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known.
more »
« less
- Award ID(s):
- 2045327
- PAR ID:
- 10573324
- Editor(s):
- Alber, Mark
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1012762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. In this paper, we argue that this makes SINDy a potentially useful tool for causal discovery and that existing tools for causal discovery can be used to dramatically improve the performance of SINDy as tool for robust sparse modeling and system identification. We then demonstrate empirically that augmenting the SINDy algorithm with tools from causal discovery can provides engineers with a tool for learning causally robust governing equations.more » « less
-
Abstract Identifying the governing equations of a nonlinear dynamical system is key to both understanding the physical features of the system and constructing an accurate model of the dynamics that generalizes well beyond the available data. Achieving this kind of interpretable system identification is even more difficult for partially observed systems. We propose a machine learning framework for discovering the governing equations of a dynamical system using only partial observations, combining an encoder for state reconstruction with a sparse symbolic model. The entire architecture is trained end-to-end by matching the higher-order symbolic time derivatives of the sparse symbolic model with finite difference estimates from the data. Our tests show that this method can successfully reconstruct the full system state and identify the equations of motion governing the underlying dynamics for a variety of ordinary differential equation (ODE) and partial differential equation (PDE) systems.more » « less
-
Agent-based models provide a flexible framework that is frequently used for modelling many biological systems, including cell migration, molecular dynamics, ecology and epidemiology. Analysis of the model dynamics can be challenging due to their inherent stochasticity and heavy computational requirements. Common approaches to the analysis of agent-based models include extensive Monte Carlo simulation of the model or the derivation of coarse-grained differential equation models to predict the expected or averaged output from the agent-based model. Both of these approaches have limitations, however, as extensive computation of complex agent-based models may be infeasible, and coarse-grained differential equation models can fail to accurately describe model dynamics in certain parameter regimes. We propose that methods from the equation learning field provide a promising, novel and unifying approach for agent-based model analysis. Equation learning is a recent field of research from data science that aims to infer differential equation models directly from data. We use this tutorial to review how methods from equation learning can be used to learn differential equation models from agent-based model simulations. We demonstrate that this framework is easy to use, requires few model simulations, and accurately predicts model dynamics in parameter regions where coarse-grained differential equation models fail to do so. We highlight these advantages through several case studies involving two agent-based models that are broadly applicable to biological phenomena: a birth–death–migration model commonly used to explore cell biology experiments and a susceptible–infected–recovered model of infectious disease spread.more » « less
-
Abstract Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. This work introduces a novel approach called physics-informed neural network with sparse regression to discover governing partial differential equations from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this discovery approach seamlessly integrates the strengths of deep neural networks for rich representation learning, physics embedding, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the equations. The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of partial differential equation systems with different levels of data scarcity and noise accounting for different initial/boundary conditions. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.more » « less