Abstract Seasonal plasticity in aggression is likely to be shaped by the contexts in which aggression is beneficial, as well as the constraints inherent in its underlying mechanisms. In males, seasonal plasticity in testosterone (T) secretion is thought to underlie seasonal plasticity in conspecific aggression, but it is less clear how and why female aggression may vary across different breeding stages. Here, we integrate functional and mechanistic perspectives to begin to explore seasonal patterns of conspecific aggression in female tree swallows (Tachycineta bicolor), a songbird with intense female–female competition and T‐mediated aggression. Female tree swallows elevate T levels during early breeding stages, coinciding with competition for nest boxes, after which time T levels are roughly halved. However, females need to defend ownership of their nesting territory throughout the breeding season, suggesting it may be adaptive to maintain aggressive capabilities, despite low T levels. We performed simulated territorial intrusions using 3D‐printed decoys of female tree swallows to determine how their aggressive response to a simulated intrusion changes across the breeding season. First, we found that 3D‐printed decoys produce data comparable to stage‐matched studies using live decoys, providing researchers with a new, more economical method of decoy construction. Further, female aggressiveness remained relatively high through incubation, a period of time when T levels are quite low, suggesting that other mechanisms may regulate conspecific female aggression during parental periods. By showing that seasonal patterns of female aggression do not mirror the established patterns of T levels in this highly competitive bird, our findings provide a unique glimpse into how behavioural mechanisms and functions may interact across breeding stages to regulate plasticity.
more »
« less
Scope and adaptive value of modulating aggression over breeding stages in a competitive female bird
Abstract In seasonally breeding animals, the costs and benefits of territorial aggression should vary over time; however, little work thus far has directly examined the scope and adaptive value of individual-level plasticity in aggression across breeding stages. We explore these issues using the tree swallow (Tachycineta bicolor), a single-brooded bird species in which females compete for limited nesting sites. We measured aggressiveness in nearly 100 females within 3 different stages: (1) shortly after territory-establishment, (2) during incubation, and (3) while caring for young chicks. Based on the timing, direction, and magnitude of behavioral changes between stages, we used k-means clustering to categorize each female’s behavior into a “plasticity type.” We then tested whether plasticity type and stage-specific aggression varied with key performance metrics. About 40% of females decreased aggressiveness across consecutive breeding stages to some degree, consistent with population-level patterns. 33% of females exhibited comparatively little plasticity, with moderate to low levels of aggression in all stages. Finally, 27% of females displayed steep decreases and then increases in aggression between stages; females exhibiting this pattern had significantly lower body mass while parenting, they tended to hatch fewer eggs, and they had the lowest observed overwinter survival rates. Other patterns of among-stage changes in aggressiveness were not associated with performance. These results reveal substantial among-individual variation in behavioral plasticity, which may reflect diverse solutions to trade-offs between current reproduction and future survival.
more »
« less
- PAR ID:
- 10573339
- Editor(s):
- van_Oers, Kees
- Publisher / Repository:
- Behavioral Ecology
- Date Published:
- Journal Name:
- Behavioral Ecology
- Volume:
- 35
- Issue:
- 4
- ISSN:
- 1045-2249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Experimentally elevated testosterone (T) often leads to enhanced aggression, with examples across many different species, including both males and females. Indeed, the relationship between T and aggression is among the most well-studied and fruitful areas of research at the intersection of behavioral ecology and endocrinology. This relationship is also hypothesized to be bidirectional (i.e., T influences aggression, and aggression influences T), leading to four key predictions: (1) Individuals with higher T levels are more aggressive than individuals with lower T. (2) Seasonal changes in aggression mirror seasonal changes in T secretion. (3) Aggressive territorial interactions stimulate increased T secretion. (4) Temporary elevations in T temporarily increase aggressiveness. These predictions cover a range of timescales, from a single snapshot in time, to rapid fluctuations, and to changes over seasonal timescales. Adding further complexity, most predictions can also be addressed by comparing among individuals or with repeated sampling within individuals. In our review, we explore how the spectrum of results across predictions shapes our understanding of the relationship between T and aggression. In all cases, we can find examples of results that do not support the initial predictions. In particular, we find that Predictions 1–3 have been tested frequently, especially using an among-individual approach. We find qualitative support for all three predictions, though there are also many studies that do not support Predictions 1 and 3 in particular. Prediction 4, on the other hand, is something that we identify as a core underlying assumption of past work on the topic, but one that has rarely been directly tested. We propose that when relationships between T and aggression are individual-specific or condition-dependent, then positive correlations between the two variables may be obscured or reversed. In essence, even though T can influence aggression, many assumed or predicted relationships between the two variables may not manifest. Moving forward, we urge greater attention to understanding how and why it is that these bidirectional relationships between T and aggression may vary among timescales and among individuals. In doing so, we will move toward a deeper understanding on the role of hormones in behavioral adaptation.more » « less
-
Abstract Actuarial senescence (called ‘senescence’ hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among‐individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism—the unique sub‐type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype—may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature.In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander,Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture–recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture–recapture models and Bayesian age‐dependent survival models.Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age‐dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late‐breeding females also lived longer but showed a senescence rate similar to that of early‐breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late‐breeding males lived longer but, unexpectedly, had higher senescence than early‐breeding males.Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing.more » « less
-
Quinn, John (Ed.)Abstract Understanding the causes and consequences of repeatable among-individual differences in behavior (i.e., animal personality) is a major area of research in behavioral and evolutionary ecology. Recently, attention has turned to understanding the processes behind changes in repeatability through ontogeny because of their implications for populations. We evaluated the relative importance of selective disappearance (i.e., differential mortality), an among-individual mechanism, in generating age-related changes in the repeatability of aggression and activity in juvenile North American red squirrels (Tamiasciurus hudsonicus). We observed age-related decreases in the repeatability of aggression across ages, arising from lower among-individual variance. Although we found evidence for directional selection on aggressiveness, it was insufficient to erode among-individual variance. Thus, ontogenetic decreases in the repeatability of aggression do not appear to be due to selective disappearance. In contrast, the repeatability of activity was higher across ages due to higher among-individual variance in activity, but there was no support for selective disappearance based on activity. Taken together, our results suggest that age-related changes in trait repeatability in red squirrels are not the result of selective disappearance and instead may be the result of within-individual developmental processes, such as individual differences in developmental trajectories.more » « less
-
Uncovering the genomic bases of phenotypic adaptation is a major goal in biology, but this has been hard to achieve for complex behavioral traits. Here, we leverage the repeated, independent evolution of obligate cavity-nesting in birds to test the hypothesis that pressure to compete for a limited breeding resource has facilitated convergent evolution in behavior, hormones, and gene expression. We used an integrative approach, combining aggression assays in the field, testosterone measures, and transcriptome-wide analyses of the brain in wild-captured females and males. Our experimental design compared species pairs across five avian families, each including one obligate cavity-nesting species and a related species with a more flexible nest strategy. We find behavioral convergence, with higher levels of territorial aggression in obligate cavity-nesters, particularly among females. Across species, levels of testosterone in circulation were not associated with nest strategy, nor aggression. Phylogenetic analyses of individual genes and co-regulated gene networks revealed more shared patterns of brain gene expression than expected by drift, but the scope of convergent gene expression evolution was limited to a small percent of the genome. When comparing our results to other studies that did not use phylogenetic methods, we suggest that accounting for shared evolutionary history may reduce the number of genes inferred as convergently evolving. Altogether, we find that behavioral convergence in response to shared ecological pressures is associated with largely independent gene expression evolution across different avian families, punctuated by a narrow set of convergently evolving genes.more » « less
An official website of the United States government

