Inflammation and oxidative stress in pancreatic islets amplify the appearance of various posttranslational modifications to self-proteins. In this study, we identified a select group of carbonylated islet proteins arising before the onset of hyperglycemia in NOD mice. Of interest, we identified carbonyl modification of the prolyl-4-hydroxylase β subunit (P4Hb) that is responsible for proinsulin folding and trafficking as an autoantigen in both human and murine type 1 diabetes. We found that carbonylated P4Hb is amplified in stressed islets coincident with decreased glucose-stimulated insulin secretion and altered proinsulin-to-insulin ratios. Autoantibodies against P4Hb were detected in prediabetic NOD mice and in early human type 1 diabetes prior to the onset of anti-insulin autoimmunity. Moreover, we identify autoreactive CD4+ T-cell responses toward carbonyl-P4Hb epitopes in the circulation of patients with type 1 diabetes. Our studies provide mechanistic insight into the pathways of proinsulin metabolism and in creating autoantigenic forms of insulin in type 1 diabetes. 
                        more » 
                        « less   
                    
                            
                            Enhancing Antigen Presentation and Inducing Antigen-Specific Immune Tolerance with Amphiphilic Peptides
                        
                    
    
            Abstract Ag-specific immunotherapy to restore immune tolerance to self-antigens, without global immune suppression, is a long-standing goal in the treatment of autoimmune disorders such as type 1 diabetes (T1D). However, vaccination with autoantigens such as insulin or glutamic acid decarboxylase have largely failed in human T1D trials. Induction and maintenance of peripheral tolerance by vaccination requires efficient autoantigen presentation by APCs. In this study, we show that a lipophilic modification at the N-terminal end of CD4+ epitopes (lipo-peptides) dramatically improves peptide Ag presentation. We designed amphiphilic lipo-peptides to efficiently target APCs in the lymph nodes by binding and trafficking with endogenous albumin. Additionally, we show that lipophilic modification anchors the peptide into the membranes of APCs, enabling a bivalent cell-surface Ag presentation. The s.c. injected lipo-peptide accumulates in the APCs in the lymph node, enhances the potency and duration of peptide Ag presentation by APCs, and induces Ag-specific immune tolerance that controls both T cell– and B cell–mediated immunity. Immunization with an amphiphilic insulin B chain 9–23 peptide, an immunodominant CD4+ T cell epitope in NOD mice, significantly suppresses the activation of T cells, increases inhibitory cytokine production, induces regulatory T cells, and delays the onset and lowers the incidence of T1D. Importantly, treatment with a lipophilic β-cell peptide mixture delays progression to end-stage diabetes in acutely diabetic NOD mice, whereas the same doses of standard soluble peptides were not effective. Amphiphilic modification effectively enhances Ag presentation for peptide-based immune regulation of autoimmune diseases. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750607
- PAR ID:
- 10573674
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The Journal of Immunology
- Volume:
- 207
- Issue:
- 8
- ISSN:
- 0022-1767
- Format(s):
- Medium: X Size: p. 2051-2059
- Size(s):
- p. 2051-2059
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2′3′-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.more » « less
- 
            Background.Transplantation of human-induced pluripotent stem cell (hiPSC)-derived islet organoids is a promising cell replacement therapy for type 1 diabetes (T1D). It is important to improve the efficacy of islet organoids transplantation by identifying new transplantation sites with high vascularization and sufficient accommodation to support graft survival with a high capacity for oxygen delivery. Methods.A human-induced pluripotent stem cell line (hiPSCs-L1) was generated constitutively expressing luciferase. Luciferase-expressing hiPSCs were differentiated into islet organoids. The islet organoids were transplanted into the scapular brown adipose tissue (BAT) of nonobese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice as the BAT group and under the left kidney capsule (KC) of NOD/SCID mice as a control group, respectively. Bioluminescence imaging (BLI) of the organoid grafts was performed on days 1, 7, 14, 28, 35, 42, 49, 56, and 63 posttransplantation. Results.BLI signals were detected in all recipients, including both the BAT and control groups. The BLI signal gradually decreased in both BAT and KC groups. However, the graft BLI signal intensity under the left KC decreased substantially faster than that of the BAT. Furthermore, our data show that islet organoids transplanted into streptozotocin-induced diabetic mice restored normoglycemia. Positron emission tomography/MRI verified that the islet organoids were transplanted at the intended location in these diabetic mice. Immunofluorescence staining revealed the presence of functional organoid grafts, as confirmed by insulin and glucagon staining. Conclusions.Our results demonstrate that BAT is a potentially desirable site for islet organoid transplantation for T1D therapy.more » « less
- 
            Abstract Malnutrition is associated with reductions in the number and function of T lymphocytes. Previous studies in the lab suggest that malnutrition may also impart a “super-quiescent” phenotype to T cells, perhaps affecting the efficiency of their migration within and between lymph nodes. Thus, the purpose of this study is to evaluate the effect of malnutrition on T cell migration in vivo and to characterize malnutrition-induced changes in the expression of proteins known to be important for T cell migration. To determine if malnourishment alters T cell migration in vivo, we compared lymph node entry rates of adoptively-transferred malnourished and control T cells in malnourished and control recipients. In agreement with other studies, control CD4+ T cells were more efficient than control CD8+ T cells at entering the lymph nodes. Interestingly, regardless of recipient diet, malnourished CD4+ and CD8+ T cells entered the lymph nodes at equivalent rates, suggesting that malnourishment eliminates distinct lymph node entry efficiencies for CD8+ and CD4+ T cells. We also found important differences in the expression of key proteins involved in T cell migration between malnourished and control mice. Overall, we found that malnutrition disrupts T cell migration including the distinct migration efficiencies of CD4+ and CD8+ T cells. An improved understanding of T cell-intrinsic changes that occur during malnourishment should enhance our knowledge of CD4+ and CD8+ T cell migration and shed light on how organisms adapt to malnutrition. Supported by NSF-MRI [DBI- 1920116] NSF-RUI [IOS-1951881]more » « less
- 
            Abstract In mammals, T cell migration is under circadian control, likely to anticipate daily rhythms in infection risk. Glucocorticoids control this process, and malnutrition is associated with increased glucocorticoid levels. Therefore, we evaluated whether malnutrition disrupts the circadian migratory patterns of T cells. Malnutrition did not impact circadian patterns of T cell residency of lymphoid tissues; indicating that fluctuations, rather than specific concentrations, of glucocorticoids are a key circadian signal. Additionally, the total number of CD4+ and CD8+ T cells in the lymph nodes and blood were lower in malnourished as compared to well-nourished mice. However, the percentage and total number of naïve T cells was maintained in the lymph nodes, blood, and spleen of malnourished mice, suggesting preferential preservation of naïve T cells. Interestingly, the percentage and total number of CD4+ and CD8+ T cells in the bone marrow was elevated significantly in mice on a malnourished diet. Additionally, malnourished CD4+ and CD8+ T cells in the bone marrow showed significantly high CCR7 expression and CCL21 expression was increased in malnourished bone marrow compared to control. CCR7 and its chemokine, CCL21, may be responsible for trafficking malnourished T cells to the bone marrow during malnutrition. Overall, these findings suggest that the bone marrow may contribute to naïve T cell preservation during malnutrition. NSF-MRI [DBI- 1920116] NSF -RUI [IOS-1951881]more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
