skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Refined Estimates of Global Ocean Deep and Abyssal Decadal Warming Trends
Abstract Deep and abyssal layer decadal temperature trends from the mid‐1980s to the mid‐2010s are mapped globally using Deep Argo and historical ship‐based Conductivity‐Temperature‐Depth (CTD) instrument data. Abyssal warming trends are widespread, with the strongest warming observed around Antarctic Bottom Water (AABW) formation regions. The warming strength follows deep western boundary currents transporting abyssal waters north and decreases with distance from Antarctica. Abyssal cooling trends are found in the North Atlantic and eastern South Atlantic, regions primarily ventilated by North Atlantic Deep Water (NADW). Deep warming trends are prominent in the Southern Ocean south of about 50°S, the Greenland‐Iceland‐Norwegian (GIN) Seas and the western subpolar North Atlantic, with cooling in the eastern subpolar North Atlantic and the subtropical and tropical western North Atlantic. Globally integrated decadal heat content trends of 21.6 (±6.5) TW in the deep and 12.9 (±1.8) TW in the abyssal layer are more certain than previous estimates.  more » « less
Award ID(s):
2023545
PAR ID:
10573754
Author(s) / Creator(s):
;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over the past century, the subpolar North Atlantic experienced slight cooling or suppressed warming, relative to the background positive temperature trends, often dubbed the North Atlantic warming hole (NAWH). The causes of the NAWH remain under debate. Here we conduct coupled ocean-atmosphere simulations to demonstrate that enhanced Indian Ocean warming, another salient feature of global warming, could increase local rainfall and through teleconnections strengthen surface westerly winds south of Greenland, cooling the subpolar North Atlantic. In decades to follow however, this cooling effect would gradually vanish as the Indian Ocean warming acts to strengthen the Atlantic meridional overturning circulation (AMOC). We argue that the historical NAWH can potentially be explained by such atmospheric mechanisms reliant on surface wind changes, while oceanic mechanisms related to AMOC changes become more important on longer timescales. Thus, explaining the North Atlantic temperature trends and particularly the NAWH requires considering both atmospheric and oceanic mechanisms. 
    more » « less
  2. Abstract Building on previous work using single-basin models, we here explore the time-dependent response of the Atlantic meridional overturning circulation (AMOC) to a sudden global temperature change in a two-basin ocean–ice model. We find that the previously identified mechanisms remain qualitatively useful to explain the transient and the long-term time-mean responses of the AMOC in our simulations. Specifically, we find an initial weakening of the AMOC in response to warming (and vice versa for cooling), controlled by the mid-depth meridional temperature contrast across the Atlantic basin. The long-term mean response instead is controlled primarily by changes in the abyssal stratification within the basin. In contrast to previous studies we find that for small-amplitude surface temperature changes, the equilibrium AMOC is almost unchanged, as the abyssal stratification remains similar due to a substantial compensation between the effects of salinity and temperature changes. The temperature-driven stratification change results from the differential warming/cooling between North Atlantic Deep Water and Antarctic Bottom Water, while the salinity change is driven by changes in Antarctic sea ice formation. Another distinct feature of our simulations is the emergence of AMOC variability in the much colder and much warmer climates. We discuss how this variability is related to variations in deep-ocean heat content, surface salinity, and sea ice in the deep convective regions, both in the North Atlantic and in the Southern Ocean, and its potential relevance to past and future climates. 
    more » « less
  3. Abstract Decadal thermohaline anomalies carried northward by the North Atlantic Current are an important source of predictability in the North Atlantic region. Here, we investigate whether these thermohaline anomalies influence surface-forced water mass transformation (SFWMT) in the eastern subpolar gyre using the reanalyses EN4.2.2 for the ocean and the ERA5 for the atmosphere. In addition, we follow the propagation of thermohaline anomalies along two paths: in the subpolar North Atlantic and the Norwegian Sea. We use observation-based datasets (HadISST, EN4.2.2, and Ishii) between 1947 and 2021 and apply complex empirical orthogonal functions. Our results show that when a warm anomaly enters the eastern subpolar gyre, more SFWMT occurs in light-density classes (27.0–27.2 kg m−3). In contrast, when a cold anomaly enters the eastern subpolar gyre, more SFWMT occurs in denser classes (27.4–27.5 kg m−3). Following the thermohaline anomalies in both paths, we find alternating warm–salty and cold–fresh subsurface anomalies, repeating throughout the 74-yr-long record with four warm–salty and cold–fresh periods after the 1950s. The cold–fresh anomaly periods happen simultaneously with the Great Salinity Anomaly events. Moreover, the propagation of thermohaline anomalies is faster in the subpolar North Atlantic (SPNA) than in the Norwegian Sea, especially for temperature anomalies. These findings might have implications for our understanding of the decadal variability of the lower limb of the Atlantic meridional overturning circulation and predictability in the North Atlantic region. Significance StatementAnomalously warm–salty or cold–fresh water, carried by the North Atlantic Current toward the Arctic, is a source of climate predictability. In this study, we investigate 1) how these ocean anomalies influence the transformation of water masses in the eastern subpolar gyre and 2) their subsequent propagation poleward and northwestward. The key findings reveal that anomalously warm waters entering the eastern subpolar gyre lead to increased transformation in lighter water masses, while cold anomalies affect denser water masses. These anomalies propagate more than 2 times faster toward the Greenland coast (northwestward) than toward the Arctic (poleward). Our findings contribute to enhancing the understanding of decadal predictability in the northern North Atlantic, including its influence on the Atlantic meridional overturning circulation. 
    more » « less
  4. Abstract Most oceans over the globe have experienced surface warming during the past century, but the subpolar Atlantic is quite otherwise. The sea surface temperature cooling trend to the south of Greenland, known as the North Atlantic Warming Hole, has raised debate over whether it is driven by the slowing of the Atlantic Meridional Overturning Circulation. Here we use observations as a benchmark and climate models as a tool to demonstrate that only models simulating a weakened historical Atlantic overturning can broadly reproduce the observed cooling and freshening in the warming hole region. This, in turn, indicates that the realistic Atlantic overturning slowed between 1900 and 2005, at a rate of −1.01 to −2.97 Sv century−1(1 Sv = 106 m3 s−1), according to a sea-surface-temperature-based fingerprint index estimate. Particularly, the Atlantic overturning slowdown causes an oceanic heat transport divergence across the subpolar North Atlantic, which, while partially offset by enhanced ocean heat uptake, results in cooling over the warming hole region. 
    more » « less
  5. Abstract Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re‐examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5°N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy‐rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5°N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5°N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid‐Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5°N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid‐Atlantic Ridge. Although the pathways between OSNAP West and 26.5°N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer. 
    more » « less