Abstract Di‐ubiquitin (diUB) conjugates of defined linkages are useful tools for probing the functions of UB ligases, UB‐binding proteins and deubiquitinating enzymes (DUBs) in coding, decoding and editing the signals carried by the UB chains. Here we developed an efficient method for linkage‐specific synthesis of diUB probes based on the incorporation of the unnatural amino acid (UAA)Nϵ‐L‐thiaprolyl‐L‐Lys (L‐ThzK) into UB for ligation with another UB at a defined Lys position. The diUB formed by the UAA‐mediated ligation reaction has a G76C mutation on the side of donor UB for conjugation with E2 and E3 enzymes or undergoing dethiolation to generate a covalent trap for DUBs. The development of UAA mutagenesis for diUB synthesis provides an easy route for preparing linkage‐specific UB‐based probes to decipher the biological signals mediated by protein ubiquitination.
more »
« less
Directed evolution of a sequence-specific covalent protein tag for RNA labeling
Efficient methods for conjugating proteins to RNA are needed for RNA delivery, imaging, editing, interactome mapping, and barcoding applications. Noncovalent coupling strategies using viral RNA binding proteins such as MS2/MCP have been widely applied but are limited by tag size, sensitivity, and dissociation over time. We took inspiration from a sequence-specific, covalent protein–DNA conjugation method based on the Rep nickase of a porcine circovirus called “HUH tag”. Though wild-type HUH protein has no detectable activity toward an RNA probe, we engineered an RNA-reactive variant, called “rHUH”, through 7 generations of yeast display–based directed evolution. Our 13.4 kD rHUH has 12 mutations relative to HUH and forms a covalent tyrosine-phosphate ester linkage with a 10-nucleotide RNA recognition sequence (“rRS”) within minutes. We engineered the sensitivity down to 1 nM of target RNA, shifted the metal ion requirement from Mn2+toward Mg2+, and demonstrated efficient labeling in mammalian cell lysate. This work paves the way toward a potentially powerful methodology for sequence-specific covalent protein–RNA conjugation in biological systems.
more »
« less
- Award ID(s):
- 2330686
- PAR ID:
- 10573938
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 9
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Immobilization of proteins and enzymes on solid supports has been utilized in a variety of applications, from improved protein stability on supported catalysts in industrial processes to fabrication of biosensors, biochips, and microdevices. A critical requirement for these applications is facile yet stable covalent conjugation between the immobilized and fully active protein and the solid support to produce stable, highly bio-active conjugates. Here, we report functionalization of solid surfaces (gold nanoparticles and magnetic beads) with bio-active proteins using site-specific and biorthogonal labeling and azide-alkyne cycloaddition, a click chemistry. Specifically, we recombinantly express and selectively label calcium-dependent proteins, calmodulin and calcineurin, and cAMP-dependent protein kinase A (PKA) with N-terminal azide-tags for efficient conjugation to nanoparticles and magnetic beads. We successfully immobilized the proteins on to the solid supports directly from the cell lysate with click chemistry, forgoing the step of purification. This approach is optimized to yield low particle aggregation and high levels of protein activity post-conjugation. The entire process enables streamlined workflows for bioconjugation and highly active conjugated proteins. Graphical Abstractmore » « less
-
Abstract After transcription, a messenger RNA (mRNA) is further post‐transcriptionally regulated by several features including RNA secondary structure and covalent RNA modifications (specifically N6‐methyladenosine, m6A). Both RNA secondary structure and m6A have been demonstrated to regulate mRNA stability and translation and have been independently linked to plant responses to soil salinity levels. However, the effect of m6A on regulating RNA secondary structure and the combinatorial interplay between these two RNA features during salt stress response has yet to be studied. Here, we globally identify RNA‐protein interactions and RNA secondary structure during systemic salt stress. This analysis reveals that RNA secondary structure changes significantly during salt stress, and that it is independent of global changes in RNA‐protein interactions. Conversely, we find that m6A is anti‐correlated with RNA secondary structure in a condition‐dependent manner, with salt‐specific m6A correlated with a decrease in mRNA secondary structure during salt stress. Taken together, we suggest that salt‐specific m6A deposition and the associated loss of RNA secondary structure results in increases in mRNA stability for transcripts encoding abiotic stress response proteins and ultimately increases in protein levels from these stabilized transcripts. In total, our comprehensive analyses reveal important post‐transcriptional regulatory mechanisms involved in plant long‐term salt stress response and adaptation.more » « less
-
Abstract Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid–liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes and densities of these cellular RNA condensates. The cis- and trans-regulation functions of these CAG-repeat tags in cellular RNA localization, life time, RNA–protein interactions and gene expression have also been investigated. Considering the importance of RNA condensation in health and disease, we expect that these genetically encodable modular and self-assembled tags can be widely used for chemical biology and synthetic biology studies.more » « less
-
We have developed a strategy for synthesizing immediately activable, water-soluble, compact (∼10–12 nm hydrodynamic diameter) quantum dots with a small number of stable and controllable conjugation handles for long distance delivery and subsequent biomolecule conjugation. Upon covalent conjugation with engineered monovalent streptavidin, the sample results in a population consisting of low-valency quantum dots. Alternatively, we have synthesized quantum dots with a small number of biotin molecules that can self-assemble with engineered divalent streptavidin via high-affinity biotin–streptavidin interactions. Being compact, stable and highly specific against biotinylated proteins of interest, these low-valency quantum dots are ideal for labeling and tracking single molecules on the cell surface with high spatiotemporal resolution for different biological systems and applications.more » « less
An official website of the United States government
