Abstract Theoretical analysis of epidemic dynamics has attracted significant attention in the aftermath of the COVID–19 pandemic. In this article, we study dynamic instabilities in a spatiotemporal compartmental epidemic model represented by a stochastic system of coupled partial differential equations (SPDE). Saturation effects in infection spread–anchored in physical considerations–lead to strong nonlinearities in the SPDE. Our goal is to study the onset of dynamic, Turing–type instabilities, and the concomitant emergence of steady–state patterns under the interplay between three critical model parameters–the saturation parameter, the noise intensity, and the transmission rate. Employing a second–order perturbation analysis to investigate stability, we uncover both diffusion–driven and noise–induced instabilities and corresponding self–organized distinct patterns of infection spread in the steady state. We also analyze the effects of the saturation parameter and the transmission rate on the instabilities and the pattern formation. In summary, our results indicate that the nuanced interplay between the three parameters considered has a profound effect on the emergence of dynamical instabilities and therefore on pattern formation in the steady state. Moreover, due to the central role played by the Turing phenomenon in pattern formation in a variety of biological dynamic systems, the results are expected to have broader significance beyond epidemic dynamics.
more »
« less
This content will become publicly available on January 1, 2026
Instabilities and Pattern Formation in Epidemic Spread Induced by Nonlinear Saturation Effects and Ornstein–Uhlenbeck Noise
Abstract We analytically study the emergence of instabilities and the consequent steady-state pattern formation in a stochastic partial differential equation (PDE) based, compartmental model of spatiotemporal epidemic spread. The model is characterized by: (1) strongly nonlinear forces representing the infection transmission mechanism and (2) random environmental forces represented by the Ornstein–Uhlenbeck (O–U) stochastic process which better approximates real-world uncertainties. Employing second-order perturbation analysis and computing the local Lyapunov exponent, we find the emergence of diffusion-induced instabilities and analyze the effects of O–U noise on these instabilities. We obtain a range of values of the diffusion coefficient and correlation time in parameter space that support the onset of instabilities. Notably, the stability and pattern formation results depend critically on the correlation time of the O–U stochastic process; specifically, we obtain lower values of steady-state infection density for higher correlation times. Also, for lower correlation times the results approach those obtained in the white noise case. The analytical results are valid for lower-order correlation times. In summary, the results provide insights into the onset of noise-induced, and Turing-type instabilities in a stochastic PDE epidemic model in the presence of strongly nonlinear deterministic infection forces and stochastic environmental forces represented by Ornstein–Uhlenbeck noise.
more »
« less
- PAR ID:
- 10574182
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- ASME Letters in Dynamic Systems and Control
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2689-6117
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Active-Matter models commonly consider particles with overdamped dynamics subject to a force (speed) with constant modulus and random direction. Some models also include random noise in particle displacement (a Wiener process), resulting in diffusive motion at short time scales. On the other hand, Ornstein–Uhlenbeck processes apply Langevin dynamics to the particles’ velocity and predict motion that is not diffusive at short time scales. Experiments show that migrating cells have gradually varying speeds at intermediate and long time scales, with short-time diffusive behavior. While Ornstein–Uhlenbeck processes can describe the moderate-and long-time speed variation, Active-Matter models for over-damped particles can explain the short-time diffusive behavior. Isotropic models cannot explain both regimes, because short-time diffusion renders instantaneous velocity ill-defined, and prevents the use of dynamical equations that require velocity time-derivatives. On the other hand, both models correctly describe some of the different temporal regimes seen in migrating biological cells and must, in the appropriate limit, yield the same observable predictions. Here we propose and solve analytically an Anisotropic Ornstein–Uhlenbeck process for polarized particles, with Langevin dynamics governing the particle’s movement in the polarization direction and a Wiener process governing displacement in the orthogonal direction. Our characterization provides a theoretically robust way to compare movement in dimensionless simulations to movement in experiments in which measurements have meaningful space and time units. We also propose an approach to deal with inevitable finite-precision effects in experiments and simulations.more » « less
-
Abstract We consider the incompressible 3D Navier–Stokes equations subject to a shear induced by noisy movement of part of the boundary. The effect of the noise is quantified by upper bounds on the first two moments of the dissipation rate. The expected value estimate is consistent with the Kolmogorov dissipation law, recovering an upper bound as in (Doering and Constantin 1992 Phys. Rev. Lett. 69 1648) for the deterministic case. The movement of the boundary is given by an Ornstein–Uhlenbeck process; a potential for over-dissipation is noted if the Ornstein–Uhlenbeck process were replaced by the Wiener process.more » « less
-
The nonlinear dependence of the mean-squared displacement (MSD) on time is a common characteristic of particle transport in complex environments. Frequently, this anomalous behavior only occurs transiently before the particle reaches a terminal Fickian diffusion. This study shows that a system of hierarchically coupled Ornstein–Uhlenbeck equations is able to describe both transient subdiffusion and transient superdiffusion dynamics, as well as their sequential combinations. To validate the model, five distinct experimental, molecular dynamics simulation, and theoretical studies are successfully described by the model. The comparison includes the transport of particles in random optical fields, supercooled liquids, bedrock, soft colloidal suspensions, and phonons in solids. The model’s broad applicability makes it a convenient tool for interpreting the MSD profiles of particles exhibiting transient anomalous diffusion.more » « less
-
Abstract Models based on the Ornstein–Uhlenbeck process have become standard for the comparative study of adaptation. Cooper et al. (2016) have cast doubt on this practice by claiming statistical problems with fitting Ornstein–Uhlenbeck models to comparative data. Specifically, they claim that statistical tests of Brownian motion may have too high Type I error rates and that such error rates are exacerbated by measurement error. In this note, we argue that these results have little relevance to the estimation of adaptation with Ornstein–Uhlenbeck models for three reasons. First, we point out that Cooper et al. (2016) did not consider the detection of distinct optima (e.g. for different environments), and therefore did not evaluate the standard test for adaptation. Second, we show that consideration of parameter estimates, and not just statistical significance, will usually lead to correct inferences about evolutionary dynamics. Third, we show that bias due to measurement error can be corrected for by standard methods. We conclude that Cooper et al. (2016) have not identified any statistical problems specific to Ornstein–Uhlenbeck models, and that their cautions against their use in comparative analyses are unfounded and misleading. [adaptation, Ornstein–Uhlenbeck model, phylogenetic comparative method.]more » « less