skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 7, 2026

Title: A soft multimodal optoelectronic array interface for multiparametric mapping of heart function in vivo
Multiparametric investigation of cardiac physiology is crucial for the diagnosis and therapy of heart disease. However, no method exists to simultaneously map multiple parameters that govern cardiac (patho)physiology from beating hearts in vivo. Here, we present a cardiac sensing platform that addresses this challenge, functioning with a wireless interface. Advanced fabrication and assembling strategies enable the heterogeneous integration of transparent microelectrodes, light-emitting diodes, photodiodes, and optical filters into a multilayer array structure on soft substrates. The microelectrodes exhibit superior electrochemical performance for measuring electrical potentials and excellent transparency for co-localized fluorescence measurement. The device shows excellent biocompatibility and records the fluorescence of calcium reporter with performance comparable to imaging cameras. Multiparametric in vivo mapping of electrical excitation, calcium dynamics, and their combined effects on cardiac excitation-contraction coupling is demonstrated during normal rhythm, arrhythmia, and treatment. This technology offers potential widespread use in cardiac research to support scientific discoveries and advance clinical life-saving diagnostics and therapies.  more » « less
Award ID(s):
2131682 2339030
PAR ID:
10574192
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
6
ISSN:
2375-2548
Page Range / eLocation ID:
eads8608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently developed optically transparent microelectrode technology provides a promising approach for simultaneous high-resolution electrical and optical biointerfacing with tissues in vivo and in vitro. A critically unmet need is designing high-performance stretchable platforms for conformal biointerfacing with mechanically active organs. Here, we report silver nanowire (Ag NW) stretchable transparent microelectrodes and interconnects that exhibit excellent electrical and electrochemical performance, high optical transparency, superior mechanical robustness and durability by a simple selective-patterning process. The fabrication method allows the direct integration of Ag NW networks on elastomeric substrates. The resulting Ag NW interface exhibits a low sheet resistance (Rsh) of 1.52–4.35 Ω sq−1, an advantageous normalized electrochemical impedance of 3.78–6.04 Ω cm2, a high optical transparency of 61.3–80.5% at 550 nm and a stretchability of 40%. The microelectrode arrays (MEAs) fabricated with this approach exhibit uniform electrochemical performance across all channels. Studies on mice demonstrate that both pristine and stretched Ag NW microelectrodes can achieve high-fidelity electrophysiological monitoring of cardiac activity with/without co-localized optogenetic pacing. Together, these results pave the way for developing stretchable and transparent metal nanowire networks for high-resolution opto-electric biointerfacing with mechanically active organs, such as the heart. 
    more » « less
  2. Abstract Bioelectronic devices that allow simultaneous accurate monitoring and control of the spatiotemporal patterns of cardiac activity provide an effective means to understand the mechanisms and optimize therapeutic strategies for heart disease. Optogenetics is a promising technology for cardiac research due to its advantages such as cell‐type selectivity and high space‐time resolution, but its efficacy is limited by the insufficient number of modulation channels and lack of simultaneous spatiotemporal mapping capabilities in current implantable cardiac optogenetics tools available for in vivo investigations. Here, soft implantable electro‐optical cardiac devices integrating multilayered highly uniform arrays of transparent microelectrodes and multicolor light‐emitting diodes in thin, flexible platforms are designed for mechanically compliant high‐content high‐precision electrical mapping and single‐/multi‐site optogenetics and electrical stimulation without light‐induced artifacts. Systematic benchtop characterizations, together with ex vivo and in vivo evaluations on healthy and diseased small animal hearts and human cardiac slices demonstrate their functionalities in real‐time spatiotemporal mapping and control of cardiac rhythm and function, with broad applications in basic and ultimately clinical cardiology. 
    more » « less
  3. Dual voltage-calcium fluorescence optical recordings are increasingly appealing to characterize complex spa-tiotemporal cardiac dynamics within ex-vivo whole-heart ex-perimental preparations. Synchrony among voltage and calcium signals allows us to unveil novel multi-scale and multi-physics couplings at the ventricular scale and quantify features that define the intrinsic nonlinearities of the observed phenom-ena. Within such a complex scenario, we propose a rigorous methodological analysis comparing and contrasting multiple cardiac alternans onset and evolution indicators for rabbit pacing-down restitution protocols. We introduce a novel integral index quantified upon voltage and calcium signals, validated against well-accepted post-processing analyses, and generalized in terms of statistical restitution curves obtained under four different thermal states. Our study suggests that such a novel indicator can further advance our predictability on alternans onset, linking the concurrent evolution to an innovative quan-tification of the characteristic length obtained for both voltage and calcium at different thermal states. 
    more » « less
  4. Abstract Transparent microelectrodes have recently emerged as a promising approach for crosstalk‐free multifunctional electrical and optical biointerfacing. High‐performance flexible platforms that allow seamless integration with soft tissue systems for such applications are urgently needed. Here, silver nanowires (Ag NWs)‐based transparent microelectrode arrays (MEAs) and interconnects are designed to meet this demand. The nanowire networks exhibit a high optical transparency >90.0% at 550 nm, and superior mechanical stability up to 100,000 bending cycles at 5 mm radius. The Ag NWs microelectrodes preserve low normalized electrochemical impedance of 3.4–15 Ω cm2at 1 kHz, and the interconnects demonstrate excellent sheet resistance (Rsh) of 4.1–25 Ω sq−1. In vivo histological analysis reveals that the Ag NWs structures are biocompatible. Studies on Langendorff‐perfused mouse and rat hearts demonstrate that the Ag NWs MEAs enable high‐fidelity real‐time monitoring of heart rhythm during co‐localized optogenetic pacing and optical mapping. This proof‐of‐concept work illustrates that the solution‐processed, transparent, and flexible Ag NWs structures are a promising candidate for the next‐generation of large‐area multifunctional biointerfaces for interrogating complex biological systems in basic and translational research. 
    more » « less
  5. Abstract Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk‐free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high‐fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold‐coated silver nanowires (Au–Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au–Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2–7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions. 
    more » « less