skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 6, 2025

Title: Spontaneous snapping-induced jet flows for fast, maneuverable surface and underwater soft flapping swimmer
Manta rays use wing-like pectoral fins for intriguing oscillatory swimming. It provides rich inspiration for designing potentially fast, efficient, and maneuverable soft swimming robots, which, however, have yet to be realized. It remains a grand challenge to combine fast speed, high efficiency, and high maneuverability in a single soft swimmer while using simple actuation and control. Here, we report leveraging spontaneous snapping stroke in the monostable flapping wing of a manta-like soft swimmer to address the challenge. The monostable wing is pneumatically actuated to instantaneously snap through to stroke down, and upon deflation, it will spontaneously stroke up by snapping back to its initial state, driven by elastic restoring force, without consuming additional energy. This largely simplifies designs, actuation, and control for achieving a record-high speed of 6.8 body length per second, high energy efficiency, and high maneuverability and collision resilience in navigating through underwater unstructured environments with obstacles by simply tuning single-input actuation frequencies.  more » « less
Award ID(s):
2126072 2329674
PAR ID:
10574421
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
49
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soft actuators are typically designed to be inherently stress‐free and stable. Relaxing such a design constraint allows exploration of harnessing mechanical prestress and elastic instability to achieve potential high‐performance soft robots. Here, the strategy of prestrain relaxation is leveraged to design pre‐curved soft actuators in 2D and 3D with tunable monostability and bistability that can be implemented for multifunctional soft robotics. By bonding stress‐free active layer with embedded pneumatic channels to a uniaxially or biaxially pre‐stretched elastomeric strip or disk, pre‐curved 2D beam‐like bending actuators and 3D doming actuators are generated after prestrain release, respectively. Such pre‐curved soft actuators exhibit tunable monostable and bistable behavior under actuation by simply manipulating the prestrain and the biased bilayer thickness ratio. Their implications in multifunctional soft robotics are demonstrated in achieving high performance in manipulation and locomotion, including energy‐efficient soft gripper to holding objects through prestress, fast‐speed larva‐like jumping soft crawler with average locomotion speed of 0.65 body‐length s−1(51.4 mm s−1), and fast swimming bistable jellyfish‐like soft robot with an average speed of 53.3 mm s−1
    more » « less
  2. Gorb, S. (Ed.)
    Through computational fluid dynamics (CFD) simulations of a model manta ray body, the hydrodynamic role of manta-like bioinspired flapping is investigated. The manta ray model motion is reconstructed from synchronized high-resolution videos of manta ray swimming. Rotation angles of the model skeletal joints are altered to scale the pitching and bending, resulting in eight models with different pectoral fin pitching and bending ratios. Simulations are performed using an in-house developed immersed boundary method-based numerical solver. Pectoral fin pitching ratio (PR) is found to have significant implications in the thrust and efficiency of the manta model. This occurs due to more optimal vortex formation and shedding caused by the lower pitching ratio. Leading edge vortexes (LEVs) formed on the bottom of the fin, a characteristic of the higher PR cases, produced parasitic low pressure that hinders thrust force. Lowering the PR reduces the influence of this vortex while another LEV that forms on the top surface of the fin strengthens it. A moderately high bending ratio (BR) can slightly reduce power consumption. Finally, by combining a moderately high BR = 0.83 with PR = 0.67, further performance improvements can be made. This enhanced understanding of manta-inspired propulsive mechanics fills a gap in our understanding of the manta-like mobuliform locomotion. This motivates a new generation of manta-inspired robots that can mimic the high speed and efficiency of their biological counterpart. 
    more » « less
  3. MDPI (Ed.)
    Through computational fluid dynamics (CFD) simulations of a model manta ray body, the hydrodynamic role of manta-like bioinspired flapping is investigated. The manta ray model motion is reconstructed from synchronized high-resolution videos of manta ray swimming. Rotation angles of the model skeletal joints are altered to scale the pitching and bending, resulting in eight models with different pectoral fin pitching and bending ratios. Simulations are performed using an in-house developed immersed boundary method-based numerical solver. Pectoral fin pitching ratio (PR) is found to have significant implications in the thrust and efficiency of the manta model. This occurs due to more optimal vortex formation and shedding caused by the lower pitching ratio. Leading edge vortexes (LEVs) formed on the bottom of the fin, a characteristic of the higher PR cases, produced parasitic low pressure that hinders thrust force. Lowering the PR reduces the influence of this vortex while another LEV that forms on the top surface of the fin strengthens it. A moderately high bending ratio (BR) can slightly reduce power consumption. Finally, by combining a moderately high BR = 0.83 with PR = 0.67, further performance improvements can be made. This enhanced understanding of manta-inspired propulsive mechanics fills a gap in our understanding of the manta-like mobuliform locomotion. This motivates a new generation of manta-inspired robots that can mimic the high speed and efficiency of their biological counterpart 
    more » « less
  4. Fluidic soft actuators are enlarging the robotics toolbox by providing flexible elements that can display highly complex deformations. Although these actuators are adaptable and inherently safe, their actuation speed is typically slow because the influx of fluid is limited by viscous forces. To overcome this limitation and realize soft actuators capable of rapid movements, we focused on spherical caps that exhibit isochoric snapping when pressurized under volume-controlled conditions. First, we noted that this snap-through instability leads to both a sudden release of energy and a fast cap displacement. Inspired by these findings, we investigated the response of actuators that comprise such spherical caps as building blocks and observed the same isochoric snapping mechanism upon inflation. Last, we demonstrated that this instability can be exploited to make these actuators jump even when inflated at a slow rate. Our study provides the foundation for the design of an emerging class of fluidic soft devices that can convert a slow input signal into a fast output deformation. 
    more » « less
  5. Shape-shifting structures can transform and recover their shapes in response to external stimuli, but they often lack programmable, clock-like control over spatiotemporal deformation and motion, especially after stimuli are removed. Achieving autonomous, time-regulated spatiotemporal motion remains a grand challenge. Here, we present an autonomous delayed-jumping metashell that integrates viscoelastic materials with monostable architected structures to address this limitation. The metashell with tunable prestored elastic energy features an internal time clock enabling programmable autonomous delayed snapping and jumping after actuation removal. The delay spans from seconds to 2.4 d, with jumping heights decreasing from over 9 to 0.5 body heights. We demonstrate its utility in autonomous explosive seed dispersal devices, achieving wide-area omnidirectional distribution with high survival rates. This strategy paves the way for creating autonomous spatiotemporal shape-shifting structures with broad applications in robotics, morphing matter, ecology, and intelligent systems. 
    more » « less